文档详情

金属的压缩实验

wm****3
实名认证
店铺
DOC
42KB
约5页
文档ID:41149225
金属的压缩实验_第1页
1/5

金属的压缩实验金属的压缩实验 一、概述一、概述实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一二、实验目的二、实验目的1、观测低碳钢压缩时的屈服荷载 FSC2、测定铸铁压缩时的抗压强度 σbC 3、观察并比较低碳钢和铸铁在压缩时的变形和破坏现象三、实验设备三、实验设备1、 液压式万能材料试验机2、 游标卡尺四、试样的制备四、试样的制备按照国标 GB7314-87《金属压缩试验方法》,金属材料的压缩试样多采用圆柱体,如图 2-16 所示试样长度 L=(2.5~3.5)d0的试样适用于测定 σpc、σtc、σsc、σbc;L=(5~8)d0的试样适用于测定 σpc0.01、Ee;L=(1~2)d0的试样适用于测定 σbc、为了尽量使试样受轴向压力,加工试样时,必须有合理的加工工艺,以保证两端面平行,并与轴线垂直。

σpc-规定非比例压缩应力σtc-规定总压缩应力σsc-压缩屈服点σbc-抗压强度σpc0.01-规定非比例压缩应变为 0.01%时的应力Ee-压缩弹性模量五、实验原理五、实验原理以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样中间部分出现显著的鼓胀,如图 2-17 所示塑性材料在压缩过程中的弹性模量、屈服点与拉伸时相同,但在到达屈服阶段时不像拉伸试验时那样明显,因此要仔细观察才能确定屈服载荷 FsC当继续加载时,试样越压越扁,由于横截面面积不断增大,试样抗压能力也随之提高,曲线持续上升,如图 2-18 所示除非试样过分鼓出变形,导致柱体表面开裂,否则塑性材料将不会发生压缩破坏因此,一般不测塑性材料的抗压强度,而通常认为抗压强度等于抗拉强度以铸铁为代表的脆性金属材料,由于塑性变形很小,所以尽管有端面摩擦,鼓胀效应却并不明显,而是当应力达到一定值后,试样在与轴线大约成 450~550的方向上发生破裂,如图 2-20 所示这是由于脆性材料的抗剪强度低于抗压强度,从而使试样被剪断 六、实验步骤六、实验步骤1、用游标卡尺测量试样直径,方法是在试样原始标距中点处两个相互垂直的方向上测量直径,并取其算术平均值。

2、根据低碳钢屈服载荷和铸铁抗压强度的估计值, 选择试验机的示力盘,并调整其指针对零3、调整好自动绘图器4、准确地将试样置于试验机活动平台的支承垫板中心处5、调整试验机夹头间距,当试样接近上支承板时,开始缓慢、均匀加载6、对于低碳钢试样,将试样压成鼓形即可停止试验对于铸铁试样,加载到试样破坏时(主针回摆 150左右)立即停止试验,以免试样进一步被压碎金属的拉伸实验指导书金属的拉伸实验指导书一、概述一、概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用二、实验目的二、实验目的1、测定低碳钢的屈服强度 Rel、抗拉强度 Rm、断后延伸率 A11.3和断面收缩率 Z2、测定铸铁的抗拉强度 Rm3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征三、实验设备及测量仪器三、实验设备及测量仪器1、万能材料试验机2、游标卡尺四、试样的制备四、试样的制备试样的制备应按照相关的产品标准或 GB/T 2975 的要求切取样坯和制备试样。

试验表明,所用试样的形状和尺寸,对其性能测试结果有一定影响为了使金属材料拉伸试验的结果具有可比性与符合性,国家已制定统一标准依据此标准,拉伸试样分为比例试样和非比例试样两种,试样的横截面形状有圆形和矩形这两种试样便于机加工,也便于尺寸的测量和夹具的设计本试验所用的拉伸试样是经机加工制成的圆形横截面的长比例试样,即 L=10d如图 2-10(a)所示金属的拉伸实验和§2-8 低碳钢材料弹性模量 E 的测定章节中所引用的如:Rm、Rel、A11.3、Z、F、S 等符号来自于 GB/T 228-2002 《金属室温拉伸实验方法》,代替 GB/T 228-1987标准中所引用的 σb、σs、δ、Ψ、P、A其它章节的符号仍引用原有的标准的符号图中 Le为试样平行长度,L0为试样原始标距(即测量变形的长度)d 为圆形试样平行长度部分原始直径图 2-10 (b)为矩形截面试样,其中a为矩形试样的原始厚度,b为矩形试样平行部分原始宽度,S0为试样平行部分原始横截面面积,r 为试样两端较粗部分到平行部分过渡圆弧半径拉伸试样由夹持段、过渡段和平行段构成试样两端较粗部分为夹持段,其形状和尺寸可根据试验机夹头情况而定。

过渡段常采用圆弧形状,使夹持段与平行段光滑连接五、实验原理五、实验原理依据国标 GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1、低碳钢试样在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图 2-11 所示的F—ΔL曲线图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力但同一种材料的拉伸曲线会因试样尺寸不同而各异为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力 F)除以试样原始横截面面积 S0,并将横坐标(伸长ΔL)除以试样的原始标距 (2)、屈服阶段SKSK 当应力超过弹性极限到达锯齿状曲线时,示力盘上的主针暂停转动或开始回转并往复运动,这时若试样表面经过磨光,可看到表征晶体滑移的迹线,大约与试样轴线成 450方向这种现象表征试样在承受的拉力不继续增加或稍微减少的情况下变形却继续伸长,称为材料的屈服,其应力称为屈服点(屈服应力)。

示力盘的指针首次回转前的最大力(Fsu上屈服力)或不计初始瞬时效应(不计载荷首次下降的最低点)时的最小力(FsL下屈服力),分别所对应的应力为上、下屈服点示力盘的主针回转后所指示的最小载荷(第一次下降后的最小载荷)即为屈服载荷Fs由于上屈服点受变形速度及试样形状等因素的影响,而下屈服点则比较稳定,故工程中一般只定下屈服点屈服应力是衡量材料强度的一个重要指标3)、强化阶段KEKE过了屈服阶段以后,试样材料因塑性变形其内部晶体组织结构重新得到了调整,其抵抗变形的能力有所增强,随着拉力的增加,伸长变形也随之增加,拉伸曲线继续上升KEKE曲线段称为强化阶段,随着塑性变形量的增大,材料的力学性能发生变化,即材料的变形抵抗力提高,塑性降低在强化阶段卸载,弹性变形会随之消失,塑性变形将会永久保留下来强化阶段的卸载路径与弹性阶段平行,卸载后重新加载时,加载线与弹性阶段平行,重新加载后,材料的比例极限明显提高,而塑性性能会相应下降这种现象叫做形变硬化或冷作硬化当拉力增加,拉伸曲线到达顶点E时,示力盘上的主针开始返回,而副针所指的最大拉力为Fm,由此可求得材料的抗拉强度它也是材料强度性能的重要指标4)、局部变形阶段EGEG(颈缩和断裂阶段)。

对于塑性材料来说,在承受拉力Fm以前,试样发生的变形各处基本上是均匀的在达到Fm以后,变形主要集中于试样的某一局部区域,该处横截面面积急剧减小,这种现象即是“颈缩”现象,此时拉力随着下降,直至试样被拉断,其断口形状呈碗状,如图 2-13(a)所示试样拉断后,弹性变形立即消失,而塑性变形则保留在拉断的试样上利用试样标距内的塑性变形来计算材料的断后延伸率 A11.3和断面收缩率 Z六、实验步骤六、实验步骤1、 根据试样的形状、尺寸和预计材料的抗拉强度来估算最大拉力,并以此力作为示力盘量程的 40%~80%,以选择合适的示力盘和相应的摆锤然后,选用与试样相适应的夹具2、 在试样的原始标距长度L0 范围内用划线机等分 10 个分格线,以便观察标距范围内沿轴向变形的情况和试样破坏后测定断后延伸率3、根据国标 GB/T 228-2002《金属室温拉伸试验方法》中的规定,测定试样原始横截面积本次试验采用圆形试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径,取其算术平均值,选用三处测得的直径最小值,并以此值计算横截面面积4、安装试样,依据万能材料试验机的操作规程进行操作,将示力盘指针调零,并将自动绘图装置调好。

经指导教师检查后即可开始试验5、加载试验,在试验过程中,要求均匀缓慢地进行加载对于低碳钢试样的拉伸试验,要注意观察拉伸过程四个阶段中的各种现象并记下屈服载荷Fel值,最大载荷Fm值对于铸铁试样,只需测定其最大载荷Fm值试样被拉断后立即停机,并取下试样6、对于拉断后的低碳钢试样,要分别测量断裂后的标距LU和颈缩处的最小直径dU测定LU的方法为:将试样断裂后的两段在断口处紧密地对接起来:1)、如果试样断口断在试样中部,直接测量原标距两端的距离作为断后的距2)、若断口处到最邻近标距端线的距离小于1/3L0时,则需要用“移位法”来计算LU其方法是:在长段上从拉断处O取基本等于短段格数得B点,接着取等于长段所余格数[偶数,图 2-15(a)]的一半,得C点;或者取所余格数[奇数,图 2-15(b)]分别减 1 与加 1的一半,得C和C1点移位后的L1分别为:AB+2BC或者AB+BC+BC1测定断面收缩率时,在试样颈缩最小处两个相互垂直的方向上测量其直径d1,取其算术平均值作为d1计算其断面收缩率。

下载提示
相似文档
正为您匹配相似的精品文档