河南省开封市、商丘市九校2024届高一数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.将函数的图象上所有点的横坐标缩小到原来的倍,纵坐标保持不变,得到函数的图象,若,则的最小值为( )A. B.C. D.2.函数的零点个数为( )A. B.C. D.3.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.54. “对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得5.函数的单调递增区间为()A.(-∞,1) B.(2,+∞)C.(-∞,) D.(,+∞)6.比较,,的大小( )A. B.C. D.7.已知,则函数( )A. B.C. D.8.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为()A. B.C. D.9.下列函数在其定义域内既是奇函数,又是增函数的是A. B.C. D.10.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.若,,,则有A. B.C. D.12.已知,则的值为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______14.已知函数,又有定义在R上函数满足:(1),,均恒成立;(2)当时,,则_____,函数在区间中的所有零点之和为_______.15.两个球的体积之比为8 :27,则这两个球的表面积之比为________.16.函数的定义域为D,给出下列两个条件:①;②任取且,都有恒成立.请写出一个同时满足条件①②的函数,则___________.三、解答题(本大题共6个小题,共70分。
解答时要求写出必要的文字说明、证明过程或演算步骤17.已知函数,其中.(1)若函数的周期为,求函数在上的值域;(2)若在区间上为增函数,求的最大值,并探究此时函数的零点个数.18.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围19.已知函数是定义在上的奇函数,且当时,.(1)当时,求函数的解析式.(2)解关于的不等式:.20.已知函数,.(1)求的最小正周期和单调区间;(2)求在闭区间上的最大值和最小值21.已知函数是定义域为的奇函数.(1)求实数的值;(2)若,不等式在上恒成立,求实数的取值范围;(3)若,且函数在上最小值为,求的值.22.在①;②“”是“”的充分条件:③“”是“”的必要条件,在这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题问题:已知集合,(1)当时,求;(2)若________,求实数的取值范围注:如果选择多个条件分别解答,按第一个解答计分参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】求出g(x)解析式,作出g(x)图像,根据图像即可求解﹒【详解】由题得,,,∵,∴=1且=-1或且=1,作的图象,∴的最小值为=,故选:D2、B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.3、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A4、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.5、A【解析】根据复合函数的单调性求解即可.【详解】因为为减函数,且定义域为.所以,即或故求的单调递减区间即可.又对称轴为,在上单调递减.又,故的单调递增区间为.故选:A【点睛】本题主要考查了复合函数的单调区间,需要注意对数函数的定义域,属于基础题型.6、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.7、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A8、D【解析】根据已知等式,结合函数的单调性进行求解即可.【详解】令时,,由,因为是定义在上的减函数,所以有,故选:D9、D【解析】分析:利用基本初等函数的单调性和奇偶性的定义,判定各选项中的函数是否满足条件即可.详解:对于A中,函数是定义域内的非奇非偶函数,所以不满足题意;对于B中,函数是定义域内的非奇非偶函数,所以不满足题意;对于C中,函数是定义域内的偶函数,所以不满足题意;对于D中,函数是定义域内的奇函数,也是增函数,所以满足题意,故选D.点睛:本题主要考查了基本初等函数的单调性与奇偶性的判定问题,其中熟记基本初等函数的单调性和奇偶性的判定方法是解答的关键,着重考查了推理与论证能力.10、B【解析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性.【详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件故选:B11、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.12、C【解析】利用同角三角函数的基本关系把原式的分母“1”变为sin2α+cos2α,然后给分子分母求除以cos2α,把原式化为关于tanα的关系式,把tanα的值代入即可求出值【详解】因为tanα=3,所以故选C【点睛】本题是一道基础题,考查学生灵活运用同角三角函数间的基本关系化简求值的能力,做题的突破点是“1”的灵活变形二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.14、 ①.1 ②.42【解析】求出的周期和对称轴,再结合图象即可.【详解】由条件可知函数的图象关于对称轴对称,由可知,,则周期,即,函数在区间中的所有零点之和即为函数与函数图象的交点的横坐标之和,当时,为单调递增函数,,,且区间关于对称,又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可,由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则,同理,…,,∴.故答案为:,.15、【解析】设两球半径分别为,由可得,所以.即两球的表面积之比为考点:球的表面积,体积公式.16、(答案为不唯一)【解析】由题意可知函数在定义域内为增函数,且,从而可得其解析式【详解】因为函数的定义域为D,且任取且,都有恒成立,所以的定义域内为增函数,因为,所以(答案为唯一)故答案为:(答案为不唯一)三、解答题(本大题共6个小题,共70分。
解答时要求写出必要的文字说明、证明过程或演算步骤17、(1)(2)最大值为,6个【解析】(1)根据正弦的二倍角公式和辅助角公式可得,利用求出,进而求出,结合三角函数的性质即可得出结果;(2)利用三角函数的性质求出的单调增区间,根据题意和集合之间的关系求出;将问题转化为函数与的图象交点的个数,作出图形,利用数形结合的思想即可得出答案.【小问1详解】由,由周期为且,得,解得,即,由,得,故,所以函数在上的值域为.【小问2详解】因为在区间上单调递增,故在区间上为单调递增由题知,存在使得成立,则必有则,解得,故,所以的最大值为.当时,函数的零点个数转化为函数与的图象的公共点的个数.画图得:由图知与的图象的公共点的个数共6个,即的零点个数为6个.18、(1),; (2)见解析; (3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) 在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴, 经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立, 在上是奇函数,对于恒成立, 又 在上是减函数,,即对于恒成立, 而函数在上的最大值为2,,∴实数的取值范围为【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)当时, (2)【解析】(1)根据函数奇偶性可求出函数的解析式;(2)先构造函数,然后利用函数的单调性解不等式.【小问1详解】解:当时,,..又当时,也满足当时,函数的解析式为.【小问2详解】设函数函数在上单调递增又可化为,在上也是单调递增函数.,解得.关于的不等式的解集为.20、(1)最小正周期为,单调递增区间是,单调递减区间是;(2)最小值为,最大值为【解析】(1)由三角函数中的恒等变换应用化简函数解析式可得,利用正弦函数的性质即得;(2)利用正弦函数的性质即求【小问1详解】由,∴的最小正周期为,由,得,由,得∴函数单调增区间为,函数单调减区间为;【小问2详解】由于,所以,所以,故,故函数的最小值为,函数的最大值为21、(1)0(2)(3)2.【解析】(1)是定义域为的奇函数,由,得到的值;(2)根据得到的范围,从而得到的单调性,结合的奇偶性,得到将不等式转化为在上恒成立,通过得到的范围;(3)由得到,从而得到解析式,令,得到,动轴定区间分类讨论,根据最小值为,得到的值.【详解】(1)因为是定义域为的奇函数,所以,所以,所以,经检验,当时,为上的奇函数(2)由(1)知:,因为,所以,又且,所以,所以是.上的单调递减函数,又是定义。