文档详情

同济六版高等数学上册总结

汽***
实名认证
店铺
DOC
553.02KB
约17页
文档ID:437240257
同济六版高等数学上册总结_第1页
1/17

同济六版高等数学上册总结第一章 函数与极限一. 函数的概念1.用变上、下限积分表示的函数(1) y,其中连续,则,(2),其中可导,连续,则2 两个无穷小的比较设且(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[],称g(x)是比f(x)低阶的无穷小2)l ≠ 0,称f (x)与g(x)是同阶无穷小3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)3 常见的等价无穷小当x →0时sin x ~ x,tan x ~ x, ~ x, ~ x1− cos x ~ , −1 ~ x , ~ x ,~ 二 求极限的方法1. 利用极限的四则运算和幂指数运算法则(1) 若(n为整数),且,则存在(单调递减有下界,极限存在)(2) 若,且,则存在(单调递增有上界,极限存在)2. 两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x) ≤ f (x) ≤ h(x)若,则3. 两个重要公式公式1公式24. 用无穷小重要性质和等价无穷小代换5. 用泰勒公式(比用等价无穷小更深刻)当时,有以下公式,可当做等价无穷小更深层次6. 洛必达法则定理1 设函数、满足下列条件:(1),;(2)与在的某一去心邻域内可导,且;(3)存在(或为无穷大),则 这个定理说明:当存在时,也存在且等于;当为无穷大时,也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(ospital)法则.例1计算极限.解 该极限属于“”型不定式,于是由洛必达法则,得.例2计算极限.解 该极限属于“”型不定式,于是由洛必达法则,得.注 若仍满足定理的条件,则可以继续应用洛必达法则,即二、型未定式定理2 设函数、满足下列条件:(1),;(2)与在的某一去心邻域内可导,且;(3)存在(或为无穷大),则 注:上述关于时未定式型的洛必达法则,对于时未定式型同样适用.例3计算极限.解 所求问题是型未定式,连续次施行洛必达法则,有.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“”和“”型的未定式,其它的未定式须先化简变形成“”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限基本公式(如果存在)8. 利用定积分定义求极限 基本格式(如果存在)三. 函数的间断点的分类函数的间断点分为两类:(1) 第一类间断点设 是函数y = f (x)的间断点。

如果f (x)在间断点处的左、右极限都存在,则称是f (x)的第一类间断点第一类间断点包括可去间断点和跳跃间断点2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点常见的第二类间断点有无穷间断点和振荡间断点四. 闭区间上连续函数的性质 在闭区间[a,b]上连续的函数f (x),有以下几个基本性质这些性质以后都要用到定理1.(有界定理)如果函数f (x)在闭区间[a,b]上连续,则f (x)必在[a,b]上有界定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b]上连续,则在这个区间上一定存在最大值M 和最小值m 其中最大值M 和最小值m 的定义如下:定义设 f (x ) = M 0 是区间[a,b]上某点0 x 处的函数值,如果对于区间[a,b]上的任一点x,总有f (x) ≤ M ,则称M 为函数f (x)在[a,b]上的最大值同样可以定义最小值m 定理3.(介值定理)如果函数f (x)在闭区间[a,b]上连续,且其最大值和最小值分别为M 和m ,则对于介于m和M 之间的任何实数c,在[a,b]上至少存在一个ξ ,使得f (ξ ) = c推论:如果函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号,则在(a,b)内至少存在一个点ξ ,使得f (ξ ) = 0这个推论也称为零点定理第二章 导数与微分1导数公式:2.四则运算法则[f (x)± g(x)]′ = f ′(x)± g′(x)[ f (x)⋅ g(x)]′ = f ′(x)g(x)+ f (x)g′(x)[3. 复合函数运算法则设y = f (u),u =ϕ (x),如果ϕ (x)在x处可导,f (u)在对应点u处可导,则复合函数y = f [ϕ (x)]在x处可导,且有对应地,由于公式不管u 是自变量或中间变量都成立。

因此称为一阶微分形式不变性4 由参数方程确定函数的运算法则设x =ϕ (t),y =确定函数y = y(x),其中存在,且≠ 0,则二阶导数5 反函数求导法则设y = f (x)的反函数x = g(y),两者皆可导,且f ′(x) ≠ 0则二阶导数6 隐函数运算法则设y = y(x)是由方程F(x, y) = 0所确定,求y′的方法如下:把F(x, y) = 0两边的各项对x求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y′ 的表达式(允许出现y 变量)7 对数求导法则先对所给函数式的两边取对数,然后再用隐函数求导方法得出导数y′对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数关于幂指函数y = [f (x)]g (x) 常用的一种方法,y = 这样就可以直接用复合函数运算法则进行8可微与可导的关系f (x)在0 x 处可微⇔ f (x)在0 x 处可导9 求n阶导数(n ≥ 2,正整数)先求出 y′, y′′,Λ ,总结出规律性,然后写出y(n),最后用归纳法证明有一些常用的初等函数的n 阶导数公式(1)(2)(3) ,(4) , (5),第三章 微分中值定理与导数应用一罗尔定理设函数 f (x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3) f (a) = f (b)则存在ξ ∈(a,b),使得f ′(ξ ) = 0二拉格朗日中值定理设函数 f (x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;则存在ξ ∈(a,b),使得推论1.若f (x)在(a,b)内可导,且f ′(x) ≡ 0,则f (x)在(a,b)内为常数。

推论2.若f (x) , g(x) 在(a,b) 内皆可导,且f ′(x) ≡ g′(x),则在(a,b)内f (x) = g(x)+ c,其中c为一个常数三 柯西中值定理设函数f (x)和g(x)满足:(1)在闭区间[a,b]上皆连续;(2)在开区间(a,b)内皆可导;且g′(x) ≠ 0则存在ξ ∈(a,b)使得(注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g(x) = x 时,柯西中值定理就是拉格朗日中值定理四 泰勒定理(泰勒公式)定理 1.(皮亚诺余项的n 阶泰勒公式)设f (x)在0 x 处有n 阶导数,则有公式,称为皮亚诺余项前面求极限方法中用泰勒公式就是这种情形,根据不同情形取适当的n , 所以对常用的初等函数如,sin x,cos x,ln(1+ x)和 (α 为实常数)等的n阶泰勒公式都要熟记定理2(拉格朗日余项的n 阶泰勒公式)设f (x)在包含0 x 的区间(a,b)内有n +1阶导数,在[a,b]上有n阶连续导数,则对x∈[a,b],有公式 ,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式当= 时,也称为n阶麦克劳林公式导数的应用:一 基本知识1.定义设函数f (x)在(a,b)内有定义, 是(a,b)内的某一点,则如果点 存在一个邻域,使得对此邻域内的任一点( ≠ x ),总有 <,则称 为函数f (x)的一个极大值,称 为函数f (x)的一个极大值点;则如果点 存在一个邻域,使得对此邻域内的任一点( ≠ x ),总有 < ,则称 为函数f (x)的一个极小值,称 为函数f (x)的一个极小值点函数的极大值与极小值统称极值。

极大值点与极小值点统称极值点2 必要条件(可导情形)设函数f (x)在处可导,且为f (x)的一个极值点,则我们称x 满足的 称为的驻点,可导函数的极值点一定是驻点,反之不然极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断3 第一充分条件 在的邻域内可导,且,则①若当时,,当时,,则为极大值点;②若当时,,当时,,则为极小值点;③若在的两侧不变号,则不是极值点.4 第二充分条件在处二阶可导,且,,则①若,则为极大值点;②若,则为极小值点.二 函数的最大值和最小值1.求函数f (x)在[a,b]上的最大值和最小值的方法首先,求出f (x) 在(a,b)内所有驻点和不可导点 x , , x 1 Λ ,其次计算f (x 1) f (x 2) f (a) f (b) k Λ 最后,比较f (x 1) f (x 2) f (a) f (b) , , , , 1 Λ ,其中最大者就是f (x)在[a,b]上的最大值M ;其中最小者就是f (x)在[a,b]上的最小值m2.最大(小)值的应用问题首先要列出应用问题中的目标函数及其考虑的区间,然后再求出目标函数在区间内的最大(小)值。

三 凹凸性与拐点1.凹凸的定义设f (x)在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有则称f (x)在I 上是凸(凹)的在几何上,曲线y = f (x)上任意两点的割线在曲线下(上)面,则y = f (x)是凸(凹)的如果曲线y = f (x)有切线的话,每一点的切线都在曲线之上(下)则y = f (x)是凸(凹)的2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点3 凹凸性的判别和拐点的求法设函数f (x)在(a,b)内具有二阶导数,如果在(a,b)内的每一点x,恒有 > 0,则曲线y = f (x)在(a,b)内是凹的;如果在(a,b)内的每一点x,恒有< 0,则曲线y = f (x)在(a,b)内是凸的求曲线y = f (x)的拐点的方法步骤是:第一步:求出二阶导数;第二步:求出使二阶导数等于零或二阶导数不存在的点 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标;第四步:求出拐点的纵坐标四 渐近线的求法五 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法换元积分法(1)第一类换元法(凑微分):(2)第二类换元法(变量代换):分部积分法使用分部积分法时被积函数中谁看作谁看作有一定规律。

记住口诀,反对幂指三为,靠前就为,例如,应该是为,因为反三角函数排在指数函数之前,同理可以推出其他三 有理函数积分 有理函数: 其中是多项式 简单有理函数: ⑴ ⑵ ⑶1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).第五章定积分一概念与性质1、 定义:2、 性质:(10条)(3)3 基本定理变上限积分:设,。

下载提示
相似文档
正为您匹配相似的精品文档