文档详情

高一数学重点

人***
实名认证
店铺
DOC
26.01KB
约3页
文档ID:560007686
高一数学重点_第1页
1/3

高一数学重点只有五个一 集合与简易逻辑集合具有四个性质 广泛性 集合的元素什么都可以 确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的 互异性 集合中的元素必须是互不相等的,一个元素不能重复出现无序性 集合中的元素与顺序无关二 函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等三 数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四 三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五 平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130 第一单元概要:第一章 集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说 ...第一章 集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样 (4)集合元素的三个特性使集合本身具有了确定性和整体性 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法 注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法用确定的条件表示某些对象是否属于这个集合的方法 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合 反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-11} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集A?A ②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B B?C 那么 A?C ④ 如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A A∪φ= A A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x ? x?S且 x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集通常用U来表示 (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.。

下载提示
相似文档
正为您匹配相似的精品文档