文档详情

八上几何辅助线专题讲解和练习

M****1
实名认证
店铺
DOCX
8.95MB
约61页
文档ID:381227344
八上几何辅助线专题讲解和练习_第1页
1/61

WORD格式八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线5)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(6)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法专业资料整理1.三角形问题添加辅助线方法方法1:倍长中线法有关三角形中线的题目,常将中线倍长构造全等三角形方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

5)过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的二:垂线、角平分线,翻转全等连如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生其对称轴往往是垂线或角的平分线三:边边若相等,旋转做实验如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生其对称中心,因题而异,有时没有中心故可分“有心”和“无心”旋转两种四:面积找底高,多边变三边如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键如遇多边形,想法割补成三角形;反之,亦成立另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证明:(法一)将DE两边延长分别交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+ECAAFGMDENDEBC图11BC图12(法二:)如图1-2,延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF(三角形两边之和大于第三边)(1)GF+FC>GE+CE(同上),,,,,,,,,,,,(2)DG+GE>DE(同上),,,,,,,,,,,,,,(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。

二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC分析:因为∠BDC与∠BAC不在同一个三角形中,没有直接的A联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于在内角的位置;证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角,GDEBFC图21∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC证法二:连接AD,并延长交BC于F∵∠BDF是△ABD的外角∴∠BDF>∠BAD,同理,∠CDF>∠CAD∴∠BDF+∠CDF>∠BAD+∠CAD即:∠BDC>∠BAC注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明三、有角平分线时,通常在角的两边截取相等的线段,构造A全等三角形,如:N例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。

EF分析:要证BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠1234CBD2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等图31对应边相等,把EN,FN,EF移到同一个三角形中证明:在DA上截取DN=DB,连接NE,NF,则DN=DC,在△DBE和△DNE中:DNDB(辅助线的作法)∵12()已知EDED(公共边)∴△DBE≌△DNE(SAS)∴BE=NE(全等三角形对应边相等)同理可得:CF=NF在△EFN中EN+FN>EF(三角形两边之和大于第三边)∴BE+CF>EF注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EFA证明:延长ED至M,使DM=D,E连接CM,MF在△BDE和△CDM中,EF2314CBDM图41BDCD(中点的定义)∵1CDM(对顶角相等)EDMD()辅助线的作法∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定义)∴∠3+∠2=90°,即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中EDMD(辅助线的作法)∵EDFFDM(已证)DFDF()公共边∴△EDF≌△MDF(SAS)∴EF=MF(全等三角形对应边相等)∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)∴BE+CF>EF注:上题也可加倍FD,证法同上。

注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中五、有三角形中线时,常延长加倍中线,构造全等三角形例如:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移A到同一个三角形中去证明:延长AD至E,使DE=AD,连接BE,则AE=2AD∵AD为△ABC的中线(已知)∴BD=CD(中线定义)BDC在△ACD和△EBD中BDCD()已证EADCEDB()对顶角相等图51ADED()辅助线的作法∴△ACD≌△EBD(SAS)E∴BE=CA(全等三角形对应边相等)∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三AFBDC图52边)∴AB+AC>2AD常延长中线加倍,构造全等三角形)练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2,求证EF=2AD。

六、截长补短法作辅助线例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点求证:AB-AC>PB-PCA分析:要证:AB-AC>PB-PC,想到利用三角形三12边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再连接PN,则PCNDPCMB61=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB图-PC证明:(截长法)在AB上截取AN=AC连接PN,在△APN和△APC中ANAC()辅助线的作法∵12(已知)APAP(公共边)∴△APN≌△APC(SAS)∴PC=PN(全等三角形对应边相等)∵在△BPN中,有PB-PN<BN(三角形两边之差小于第三边)∴BP-PC<AB-AC证明:(补短法)延长AC至M,使AM=AB,连接PM,在△ABP和△AMP中ABAM()辅助线的作法∵12()已知APAP()公共边∴△ABP≌△AM。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档