文档详情

轨道电路分路不良的原因及解决方案

m****
实名认证
店铺
DOC
75.50KB
约10页
文档ID:560768696
轨道电路分路不良的原因及解决方案_第1页
1/10

浅谈轨道电路分路不良据不完全统计,当前全国铁路存在3.6 万 xx 分路不良区 xx这种区 xx 由于无法完成列车占用检查,会引发进路提前错误解锁,引起道岔中途转换,造成挤岔、脱线事故或列车侧面冲突等事故,给铁路运营带来了安全隐患,严重影响了铁路运输效率,已成为全路亟待解决的重大安全技术问题1 产生轨道电路分路不良的原因所谓轨道电路分路不良就是俗称的 “压不死 ”、“丢车 ”、或 “xx带”,即:当列车进入某一轨道区 xx 时,对应区 xx 的轨道继电器却仍处在吸起状态或时吸时落状态,此时相应的信号灯和控制台上会错误的显示绿灯和白灯,表明该轨道电路已失去了对轨道区 xx 占用状态检查的功能当发生这样情况时,列车司机和车站调度人员就会误认为该区 xx 内无车占用,进行行车和办理进路操作,从而造成列车冲撞、挤拈、脱轨等严重的行车事故造成这一现象的原因主要与以下因素有关1.1 钢轨面生锈及污染钢轨是轨道电路的重要组成部分,列车分路就是通过作用于钢轨来实现的钢轨在露天状态下,其表面灰尘吸附水分在钢轨表面会发生化学反应,形成 Fe(OH)3 ,薄膜氧化层在 —些货场,装卸粉尘散落在轨面或被机车车辆轮对带到轨面上,再经列车轮碾轧,轨面形成绝缘层,其效果同生锈的氧化层一样,当列车分路时使轮对与轨面的接触电阻变大,从而使轨道电路出现分路不良。

按锈蚀程度,分路不良区 xx 可分为轻度、 xx 和重度 3 种1.2 车流量钢轨在自然状态下,生锈是比较缓慢的列车在高速行进中轮对与钢轨间会产生摩擦,摩擦过程中就能清除掉轨面上的锈和污染消除生锈和污染的程1/10度取决于车流大小、车速高低正线几乎没有生锈区 xx 就是因为车流大、车速高的缘故,而在很少走车的侧线或斜股便会产生大量分路不良区 xx1.3 钢轨轨面电压钢轨轨面的氧化层及污染层 (简称 “xx导电层 ”)在恒定压力条件下,呈现为“类放电管 ”击穿效应,即:当轨面电压升高到 —定程度,便会击穿不良导电层,使轨道电路得以分路,从而达到解决轨道电路分路不良的目的经过大量试验及现场测试,吸取国外经验,结合当前轨道电路现状,划定了站内轨道电路最小轨面电压等级为 3 V、20 V 和 80 V 3 个档级1.4 分路电流钢轨表面的不良导电层在电压击穿前表现为很高的阻抗,数 xx、数百 xx 甚至上千 xx电压达到击穿值后,电流瞬间增加,分路电阻降低,电流越大,电阻越小当分路电阻小于标准分路电阻,轨道电路能可靠分路;分路电阻大于标准分路电阻,就会分路不良此时就必须增大分路电流,继续烧结分路电阻,使其小于标准分路电阻,从而到达分路的目的。

2 解决轨道电路分路不良的具体措施轨道电路分路不良是一个世界性的问题,各国根据自己的国情都采用了不同的方法,主要分 “轨道电路方式 ”和“非轨道电路方式 ”2种非轨道电路方式主要包括有计轴式、堆焊及喷涂等;轨道电路方式包括脉冲式、 3 v 化等针对我同站内电气化区 xx 以 25 Hzxx轨道电路为主,非电气化区 xx 以 480 轨道电路为主的情况,主要介绍采用基于轨道电路解决分路不良的具体措施方法2/101.提高送、受电端的阻抗通过在送、受电端增加谐振电路,提高送、受电端的阻抗,最终达到提高轨面电压的目的,即利用高电压击穿钢轨的不良导电层2.提高轨道电路系统的功率在提高轨面电压的同时,必须保证分路电阻上的电流满足设计要求,这样才能保证接触电阻小于标准分路电阻3.采用高返还系统的电子接收器进一步降低整个轨道电路系统的功率,实现对室外防护盒电容漏电、内部断线、外部连接线断线、钢轨接续线接触不良、钢丝绳引接线接触不良等所有导致轨面电压降低后,不能击穿不良导电层故障的防护4.采用脉冲式轨道电路通过周期性的触发储能电容放电,形成周期不对称脉冲信号,占空比约 100:1,钢轨上瞬间功率最大能够达到近万瓦 (100V、100A),利用其瞬间功率达到击穿不良导电层的目的,从而解决轨道电路分路不良。

3 具有解决分路不良功能的轨道电路系统结合国情,借鉴国内外在解决轨道电路分路 xx 问题上的经验,研制开发了具有解决分路不良功能的轨道电路系统: 25 Hzxx轨道电路 (UI 型)和多特征脉冲轨道电路系统其中 25 Hzxx轨道电路 (UI 型)主要适用于轻度腐蚀的分路不良区xx,其钢轨轨面电压为 3 v 档;多特征脉冲轨道电路适用于 xx 和重度腐蚀的分路不良区 xx,其钢轨轨面电压为 20 V 档和 80 V 档3.1 25Hzxx轨道电路 (UI 型)25 Hzxx轨道电路 (UI 型),是针对既有存在分路不良的 25 Hzxx轨道电路区xx,且适用于轻度污染的区 xx该系统充分体现出技术有效、易于实施、改造经济的特点3/103.1.1 技术条件1.轨道电路 xx:电气化区 xx,700 m0.6Ω ?km)、1000m1.0Ω ?km);非电气化区 xx,800m0.6Ω ?km)、1000 m1.0Ω ?km)2.轨面最小电压 ≥ 3V,受端轨面 3 v 对应室内接收器落下门限3.最小短路电流 ≥ 4 A4.分路灵敏0.25Ω5.最大消耗功率 165 W( ≤ 1200 m)3.1.2 技术特点1.具备大电流和高电压输出能力,符合解决分路不良的技术条件。

4/102.具备高分路灵敏度,分路灵敏度按0.25 n 设计3.通过接收端的调整配置,使接收器落下门限与钢轨接收端 3V 对应,能够实现对钢轨最小电压的检查防护,提高了系统的 xx,能够解决包括钢轨接续线接触不良、引接线接触不良、谐振设备电容漏电、谐振设备断线等,所有可能导致轨面电压下降到 3 V 以下而丧失击穿能力的故障防护4.轨道电路设汁中考虑了对钢轨断轨的检查,能够实现双端扼流均有外部连接条件下的断轨检查功能5.利用既有系统设备构成,便于实施改造3.1.3 系统构成1.非电化区 xx,主要设备包括: 25Hzxx轨道电路接收器 (GX?J-25A/B/C)、通用轨道变压器 (CZ?BGT)、调整电阻等2.电化区 xx,主要设备包括: 25 Hzxx轨道电路接收器 (GX?J-25A/B/C)、通用轨道变压器 (GZ.BGT)、扼流变压器 (BEI(UI))、室外 xx 防护盒 (HFW-1)、调整电阻、可调电阻等5/103.1.4 主要设备1.25 Hzxx轨道接收器采用高可靠数字处理技术,可同时处理 2 路轨道信号,对 2xx 轨道区 xx 进行占用、空闲状态检查设备采用双机互为冗余的方式。

根据现场设备结构特点,可分为如下 3 种(见表 1)2.HFW-1型 xx 室外防护盒用于电化区 xx,与扼流变压器的信号侧 xx,构成在失谐条件下的高阻抗,提高工作频点 25 Hz的阻抗3.BET型通用型扼流变压器自身构成在失谐条件下的高阻抗,提高工作频点 25 Hz的阻抗同时利用形成 50 Hzxx谐振低阻抗,提高对工频 50 Hz 的防护能力4.GZBGT型通用轨道变压器可替代原 97 型 xx 轨道电路中的 BC2-130 /25 变压器,并将功率提高 1 倍5.可调电阻用于电化区 xx 的轨道电路接收端,可稳定接收端阻抗、调整接收端电压以及实现隔离6.调整电阻用于非电化区 xx 的送受端和电气化区 xx 的受端3.2 多特征脉冲轨道电路多特征脉冲轨道电路是在我国高压不对称脉冲轨道电路基础上,吸收近年来 xx 高压脉冲轨道电路技术而设计的一种具有多种信息特征的脉冲轨道电路该轨道电路充分利用输出瞬间功率极高 (近万瓦, 100 V,100A)的特点,完成对站内腐蚀较严重轨道区 xx 锈层、污染物的击穿作用,从而实现列车的良好分路主要应用于 xx 和重度污染的轨道区 xx6/103.2.1 技术条件1.轨道电路 xx:800m(O. 6 Ω ?km),1 050 m(1 Ω ?km)2.轨面最小电压 ≥ 20 V3.最小短路电流 ≥ 20 A4.分路灵敏0.15Ω5.最大消耗功率 140 W6.系统返还系数 50%3.2.2 技术特点1.轨面瞬间功率最大能够达到近万瓦,符合解决分路不良的技术条件。

2.功耗低每个轨道电路平均消耗功率 80 w轨道电路采用脉冲信号作为传输信号,其占空比仅为 1%,因而轨道电路功率消耗较低7/103.轨道电路的功率消耗与列车占用与否、轨道电路负载变化无关,仅取决于其脉冲发送器内部储能电容器的储能大小4.脉冲信号的 “不对称 ”特性,提高了系统的抗干扰能力正脉冲 (xx 头)的电压幅值 xx 负脉冲 (xx 尾),同时正脉冲的宽度远小于负脉冲的宽度,因而系统对于牵引电流、移频信号及绝缘破损等有很强的防护能力5.系统采用了 4 种脉冲频率,增加了轨道电路的特征信息量6.充分考虑现场供电方式的多样性 (室内供电、室外 25 Hz、 50 Hz供电 ),能够适应各种环境,方便现场改造3.2.3 系统构成1.非电化区 xx,主要设备包括: GZ?FNM型多特征脉冲室内发送器、GZ?F。

下载提示
相似文档
正为您匹配相似的精品文档