最新九年级上册数学圆章节知识点总结学习资料 与圆相关的基本知识和计算 一、知识梳理: (一):圆及圆的有关概念 1.圆:到顶点的距离等于定长的点的集合叫做圆; 2.弧:圆上任意两点间的部分叫做圆弧,简称弧圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧; 3.弦:连接圆上任意两点的线段叫做弦经过圆心的弦叫做直径,它是圆的最长的弦; 4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧; 5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角; (二)圆的有关性质: 1.对称性:①圆是中心对称图形,其对称中心是圆心;②圆是轴对称图形,其对称轴是直径所在的直线; 2.垂径定理及其推论: (1)、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧; (2)、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧; 3.圆心角、弧、弦之间的关系 (1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; (2)推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等 4.圆周角与圆心角的关系 (1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 90的圆周角所对的弦是直径; (2)推论:半圆(或直径)所对的圆周角是直角,0 5.圆内接四边形对角互补 (三)点与圆的位置关系 1、点和圆的位置关系 如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系. (1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内. 与圆相关的基本知识和计算 一、知识梳理: (一):圆及圆的有关概念 1.圆:到顶点的距离等于定长的点的集合叫做圆; 2.弧:圆上任意两点间的部分叫做圆弧,简称弧圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧; 3.弦:连接圆上任意两点的线段叫做弦经过圆心的弦叫做直径,它是圆的最长的弦; 4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧; 5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角; (二)圆的有关性质: 1.对称性:①圆是中心对称图形,其对称中心是圆心;②圆是轴对称图形,其对称轴是直径所在的直线; 2.垂径定理及其推论: (1)、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧; (2)、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧; 3.圆心角、弧、弦之间的关系 (1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; (2)推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等 4.圆周角与圆心角的关系 (1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 90的圆周角所对的弦是直径; (2)推论:半圆(或直径)所对的圆周角是直角,0 5.圆内接四边形对角互补 (三)点与圆的位置关系 1、点和圆的位置关系 如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系. (1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内. 。