文档详情

全国大学生数学竞赛预赛试卷和解答-非数学类

枫**
实名认证
店铺
DOC
267.51KB
约7页
文档ID:379983275
全国大学生数学竞赛预赛试卷和解答-非数学类_第1页
1/7

第一届全国大学生数学竞赛预赛试卷(非数学类,2009)一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解:令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解:令,则,,解得3.曲面平行平面的切平面方程是__________.解:因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是4.设函数由方程确定,其中具有二阶导数,且,则________________.解:方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解:故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解:由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证:因被积函数的偏导数连续在上连续,故由格林公式知而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是 下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。

因此即 ,又 ,,所以,当时, 与等价的无穷大量是。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档