文档详情

用三线摆测量转动惯量

m****
实名认证
店铺
DOC
228KB
约13页
文档ID:516187649
用三线摆测量转动惯量_第1页
1/13

用三线摆测转动惯量转动惯量是刚体转动惯性的量度,它与刚体的质量分布和转轴的位置有 关对于形状简单的均匀刚体,测出其外形尺寸和质量,就可以计算其转动惯 量对于形状复杂、质量分布不均匀的刚体,通常利用转动实验来测定其转动 惯量为了便于与理论计算值比较,实验中的被测刚体均采用形状规则的刚 体一、实验目的1. 加深对转动惯量概念和平行轴定理等的理解 ;2 . 了解用三线摆测转动惯量的原理和方法;3.掌握周期等量的测量方法二、 实验仪器DHTC-1A三线摆实验仪、DHTC-3B多功能计时器、水准仪、卷尺、游标卡尺、物理天平及待测物体等三、 实验原理 一、三线摆介绍图1是三线摆示意图上、下圆盘 均处于水平,悬挂在横梁上横梁由立 柱和底座(图中未画出)支承着三根 对称分布的等长悬线将两圆盘相连拨动转动杆就可以使上圆盘小幅度转动 从而带动下圆盘绕中心轴 00 /作扭摆 运动当下圆盘的摆角0很小,并且忽 略空气摩擦阻力和悬线扭力的影响时, 根据能量守恒定律或者刚体转动定律都 可以推出下圆盘绕中心轴00 /的转动 惯量Jo为,mogRjJo 鼻莅^0 (1) 图1三线摆示意图式中,mo为下圆盘的质量;r和R分别为上下悬点离各自圆盘中心的距 离;Ho为平衡时上下圆盘间的垂直距离;To为下圆盘的摆动周期,g为重力加 速度。

阿克苏地区的重力加速度为9.8015ms-2将质量为m的待测刚体放在下圆盘上,并使它的质心位于中心轴 00 / 上测出此时的摆动周期T和上下圆盘间的垂直距离 H ,则待测刚体和下圆盘对中心轴的总转动惯量Ji为Jr©0 m)gR r_2 I4 二2H(2)(3)待测刚体对中心轴的转动惯量 J与Jo和Ji的关系为J= Ji — Jo利用三线摆可以验证平行轴定理平行轴定理指出:如果一刚体对通过质心的某一转轴的转动惯量为Jc,则这刚体对平行于该轴、且相距为d的另一转 轴的转动惯量J<为Jx=Jc +md式中,m为刚体的质量实验时,将二个同样大小的圆柱体放置在对称 分布于半径为Ri的圆周上的二个孔上,如图2所 示测出二个圆柱体对中心轴 00 /的转动惯量Jx4)图2二孔对称分布如果测得的Jx值与由(4)式右边计算得的结果比 较时的相对误差在测量误差允许的范围内 (W5%), 则平行轴定理得到验证四、 实验任务1、 用三线摆测定下圆盘对中心轴 00 /的转动惯量和圆柱体对其质心轴的转动惯量要求测得的圆柱体的转动惯量值与理论计算值 (J-^mr,2 , ri2为圆柱体半径)之间的相对误差不大于5%2、 用三线摆验证平行轴定理。

五、 实验注意事项1、 测量前,根据水准泡的指示,先调整三线摆底座台面的水平,再调整 三线摆下圆盘的水平测量时,摆角B尽可能小些,以满足小角度近似防止 三线摆在摆动时发生晃动,以免影响测量结果2、 测量周期时应合理选取摆动次数 对三线摆,测得R、r、m°和H后,由(1)式推出J0的相对误差公式,使误差公式中的2? To/ To项对?Jo/Jo的影响比其它误差项的影响小作为依据来确定摆动次数 估算时,?mo取0.02g ,时间测量误差?t取0.03s,? R、?r和?Ho可根据实际情况确定六、实验步骤1、测量下圆盘的转动惯量J0>—悬盘边(1) 测量上下圆盘悬点离各自圆盘中心的距离 r和R;用游标卡尺测量上圆盘各悬点间距离 bi、b2、b3;用游标卡尺测量下圆盘各悬点间距离 ai、a2、a3;1~ i-/ 3 ;' 3则 r (bi b2 b3), R (ai a? 83);9 9(2) 测量上下圆盘之间的间距 H0 ;(3) 测量并记录下圆盘的质量 m0和直径D;(4) 测量下圆盘摆动周期 T0:将测量周期数置为60,轻轻旋转上圆盘,使 下圆盘作扭转摆动(摆角小于5度),记录数据见表1。

r( cm)R( cm)H0(cm)m°(g)D ( cm)60个摆动周期总时间平均时间t平均周期T0J-m0gRrT024兀 2hs)(s)(s)(kg.m2)12.测量下圆盘加圆环后的转动惯量 Ji(1)测量并记录圆环的质量 mi;(2) 测量圆环的内直径和外直径 Di和D2;(3) 测量上下圆盘之间的间距 H ;(4) 测量加圆环后的摆动周期T,并记录数据;mi(g)Di (cm)D2( cm)H ( cm)60个摆动周期总时间(s)平均时间t(s)平均周期T(s)(m° 十 m)gRr 2Ji 2 14jt2H(kg.m2)1(次)2(次)3(次)4(次)5(次)3. 验证平行轴定理(1) 测量圆柱体质量m ;(2) 测量圆柱体的半径r柱;(3) 将两个质量均为 m的圆柱体按照下悬盘上的刻线对称地放置在悬盘 上,测量它们的间距为2d ;(4) 测量摆动周期Ti ;表3m(g)r 柱(cm)d ( cm)60个摆动周期总时间(s)平均时间t(s)平均周期Ti(s)1(次b七、实验数据处理1. 下圆盘的转动惯量数据处理 圆盘转动惯量实验值:Jo =m°gRr42HoTo2 =圆盘转动惯量理论值:相对误差:J 0 —J 0J。

’100% =2. 圆环的转动惯量数据处理F圆盘加圆环后的总转动惯量;, (m° 忖)gRr 2J1 T4 二2H圆环的转动惯量:圆环转动惯量理论值'1 2 -J mi m1 ( D1 D2 )=8相对误差:Er 二J m1 J m1J m1100% 二3. 平行轴定理验证F圆盘加对称圆柱后总转动惯量:(m° 2m )gRr 2J1 _ ■ ~114二2H一个圆柱的转动惯量:1Jm = (」1 - J)=圆柱转动惯量理论值:=—mr柱md相对误差:IJ m —J mE r ' 100% 二Jm八、思考题1、 三线摆在摆动过程中要受到空气的阻尼,振幅会越来越小,它的周期 是否会随时间而变?2、 在三线摆下圆盘上加上待测物体后的摆动周期是否一定比不加时的周 期大?试根据(1)式和(2)式分析说明之3、 如果三线摆的三根悬线与悬点不在上、下圆盘的边缘上,而是在各圆 盘内的某一同心圆周上,贝U( 1)式和(2)式中的r和R各应为何值?4、 证明三线摆的机械能为 丄j • 】mg熨X,并求出运动微分方程,2 2 H从而导出(1)式。

下载提示
相似文档
正为您匹配相似的精品文档