文档详情

陶瓷基复合材料制备

re****.1
实名认证
店铺
PPT
1.40MB
约66页
文档ID:589139899
陶瓷基复合材料制备_第1页
1/66

第三章第三章 陶瓷基复合材料制造工艺陶瓷基复合材料制造工艺陶瓷材料的特点决定了工艺的设计与选择陶瓷材料的特点决定了工艺的设计与选择 第三章第三章 陶瓷基复合材料制造工艺陶瓷基复合材料制造工艺1、熔点、熔点5、热膨胀系数、热膨胀系数2、挥发性、挥发性6、蠕变特性、蠕变特性3、密度、密度7、强度、强度4、弹性模量、弹性模量8、断裂韧性、断裂韧性9、基体与增强相之间的相容性、基体与增强相之间的相容性 化学稳定性化学稳定性‚ 热相容性热相容性ƒ 与环境的相容性:内部的和外部的,外部的相容性与环境的相容性:内部的和外部的,外部的相容性是指氧是指氧化和蒸发性能化和蒸发性能 第三章第三章 陶瓷基复合材料制造工艺陶瓷基复合材料制造工艺3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)是一种被广泛应用的工艺适用于连续纤维、长纤维、短是一种被广泛应用的工艺适用于连续纤维、长纤维、短纤维、颗粒或晶须增强的陶瓷基复合材料纤维、颗粒或晶须增强的陶瓷基复合材料粉末制备粉末制备 压压 制制 烧烧 结结 后处理后处理(增强相增强相+基体基体 (单向、双向单向、双向 (温度,温度, (二次二次 成成品品+粘结剂粘结剂) 等静压等静压 ) 时间时间) 加工加工) 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)粉末制备粉末制备粉体粉体: 粉体是介于致密体与粉体是介于致密体与胶体之间的颗粒集合物,其胶体之间的颗粒集合物,其颗粒当量直径在颗粒当量直径在 0.1 微米和微米和 1 毫米之间。

毫米之间 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)陶瓷粉末制备方法陶瓷粉末制备方法粉体的性能直接影响陶瓷的性能,制备高纯、超细、组分粉体的性能直接影响陶瓷的性能,制备高纯、超细、组分均匀分布、无团聚的粉体是获得优良陶瓷基复合材料的关键的均匀分布、无团聚的粉体是获得优良陶瓷基复合材料的关键的第一步制粉的方法:制粉的方法:p 机械法:工艺简单、产量大机械法:工艺简单、产量大p 化学法:可获得性能优良的高纯、超细、组分均匀的化学法:可获得性能优良的高纯、超细、组分均匀的粉料 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)陶瓷粉末制备方法陶瓷粉末制备方法Ø 机械法最常用的是球磨和搅拌震动磨机械法最常用的是球磨和搅拌震动磨Ø化学法可分为固相法、化学法可分为固相法、液相法液相法和气相法三种和气相法三种液相法是目前工业上和实验室中广泛采用的方法,主液相法是目前工业上和实验室中广泛采用的方法,主要用于氧化物系列超细粉末的合成要用于氧化物系列超细粉末的合成气相法多用于制备超细、高纯的非氧化物陶瓷材料。

气相法多用于制备超细、高纯的非氧化物陶瓷材料 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)压制工艺压制工艺² 单向或双向的模压单向或双向的模压² 等静压制、振动压制、粉末轧制及粉浆浇注等静压制、振动压制、粉末轧制及粉浆浇注u 压制过程中粉末行为压制过程中粉末行为Œ 颗粒间位移,密度增加,压力不变颗粒间位移,密度增加,压力不变 颗粒间产生磨擦位移,密度继续增加,压力升高颗粒间产生磨擦位移,密度继续增加,压力升高Ž 颗粒产生弹性变形,压制过程的本质变化,密度不再颗粒产生弹性变形,压制过程的本质变化,密度不再提高,压力增加很快提高,压力增加很快 颗粒发生塑性变形和脆性断裂颗粒发生塑性变形和脆性断裂 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)压制压力与压坯密度的变化压制压力与压坯密度的变化 充填孔隙充填孔隙 阻滞阻滞 变形变形相相对对密密度度成形压力成形压力图图 3-1 压坯密度随成形压力的变化压坯密度随成形压力的变化Ⅰ Ⅱ Ⅲ 3.1普通工艺介绍普通工艺介绍3.1.1 粉末冶金工艺粉末冶金工艺 (冷压与烧结工艺冷压与烧结工艺)影响压制过程的因素影响压制过程的因素² 粉体的物理特性,硬度、纯度、形状、松装密度粉体的物理特性,硬度、纯度、形状、松装密度² 成形剂(润滑剂)成形剂(润滑剂)² 加压方式与压力的大小加压方式与压力的大小² 加压速度加压速度 3.1.1粉末冶金粉末冶金(冷压烧结冷压烧结)烧结过程烧结过程 烧结过程:是指粉末压坯的适当的温度和气氛条件下,烧结过程:是指粉末压坯的适当的温度和气氛条件下,加热一段时间内发生的变化现象和过程。

加热一段时间内发生的变化现象和过程3.1普通制备工艺普通制备工艺 3.1.1粉末冶金粉末冶金(冷压烧结冷压烧结)烧结热力学烧结热力学 烧结是一个体系自由能减少的过程烧结是一个体系自由能减少的过程Ø 缩颈增大,颗粒表面平直化而使比表面积减少缩颈增大,颗粒表面平直化而使比表面积减少Ø 烧结体内孔隙总体积与总表面积减少烧结体内孔隙总体积与总表面积减少Ø 颗粒内晶格畸变消除颗粒内晶格畸变消除烧结机制烧结机制Ø 粘性流动粘性流动Ø 扩散:体积扩散、表面扩散、晶界扩散扩散:体积扩散、表面扩散、晶界扩散Ø 塑性流动塑性流动3.1普通制备工艺普通制备工艺 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing)热压工艺:压力与温度同时作用于粉体,加快了粉体的致热压工艺:压力与温度同时作用于粉体,加快了粉体的致密化速度,使得产品的致密度更高,同时晶粒尺寸也更小密化速度,使得产品的致密度更高,同时晶粒尺寸也更小 浆体浸渍热压工艺:浆体浸渍热压工艺:² 制备增强纤维均匀排列在基体中的混合料制备增强纤维均匀排列在基体中的混合料² 混合料的热压混合料的热压 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing) 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing)压力与加热温度是最重要的参数。

压力与加热温度是最重要的参数 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing)需要考虑的问题需要考虑的问题::² 在整个操作过程中纤维要特别小心对待,以防损坏纤维表面在整个操作过程中纤维要特别小心对待,以防损坏纤维表面² 纤维张力影响到浸渍效果纤维张力影响到浸渍效果,但过高的张力可能导致纤维的断裂但过高的张力可能导致纤维的断裂² 很高的压制压力、晶体状的基体陶瓷在与纤维机械接触以及很高的压制压力、晶体状的基体陶瓷在与纤维机械接触以及高温下基体与纤维的反应都有可能损坏纤维高温下基体与纤维的反应都有可能损坏纤维² 浆料中陶瓷粉的含量、颗粒尺寸分布、粘结剂含量以及溶剂浆料中陶瓷粉的含量、颗粒尺寸分布、粘结剂含量以及溶剂的种类等是很重要的参数,实际上复合材料中纤维与基体的的种类等是很重要的参数,实际上复合材料中纤维与基体的相对比例就是由这些参数决定的相对比例就是由这些参数决定的² 复合材料产品内基体中的孔隙越少越好,因此浆料中的挥发复合材料产品内基体中的孔隙越少越好,因此浆料中的挥发性粘结剂应彻底去除,并且陶瓷颗粒的尺寸应小于纤维的直性粘结剂应彻底去除,并且陶瓷颗粒的尺寸应小于纤维的直径。

径 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing)浆体浸渍工艺的主要优点:浆体浸渍工艺的主要优点:J 在预浸料中增强纤维可按不同的要求排放:定向的、交叉在预浸料中增强纤维可按不同的要求排放:定向的、交叉的(的(0 /90 /0 /90 )或按一定的角度()或按一定的角度(+ /- /+ /- )J 加热温度低加热温度低J 得到的复合材料的力学性能高得到的复合材料的力学性能高缺点:缺点:L 零件形状不能太复杂零件形状不能太复杂L 基体材料必须是低熔点或低软化点陶瓷,较基体材料必须是低熔点或低软化点陶瓷,较适合于非晶陶适合于非晶陶瓷基体瓷基体 3.1普通工艺介绍普通工艺介绍3.1.2 热压工艺热压工艺 (Hot pressing)定向氧化铝纤维定向氧化铝纤维/玻璃陶瓷复合材料断面照片玻璃陶瓷复合材料断面照片 3.1普通工艺介绍普通工艺介绍3.1.3 热压热压-反应烧结工艺反应烧结工艺 (Hot pressing-reaction bonding method)这是由美国航空航天局(这是由美国航空航天局(NASA))在上一世纪八十年代发展在上一世纪八十年代发展的混合了热压法与反应烧结法来制备碳化硅增强氮化硅陶瓷基体的混合了热压法与反应烧结法来制备碳化硅增强氮化硅陶瓷基体复合材料的工艺。

复合材料的工艺反应烧结工艺:反应烧结工艺:①Si 粉粉 + Si3N4 混合后成型混合后成型② 95%N2 + 5 H2%气氛、气氛、1180 - 1210 ℃预氮化预氮化 1-1.5小时,必要小时,必要时可进行机械加工,达到精确尺寸时可进行机械加工,达到精确尺寸③ 在在1350 - 1450 ℃氮化氮化 18 - 36 小时,此时有小时,此时有3 Si (s) + 2 N2 ( g) Si3N4(g)3 Si (g) + 2 N2 ( g) Si3N4(g) 3.1普通工艺介绍普通工艺介绍3.1.3 热压热压-反应烧结工艺反应烧结工艺 (Hot pressing-reaction bonding method)Si(s) + SiO2 2 SiO(g)④ 所有的硅都反应变成氮化硅,得到尺寸精密的制品所有的硅都反应变成氮化硅,得到尺寸精密的制品值得指出的是,硅与氮发生反应,使其体积增加值得指出的是,硅与氮发生反应,使其体积增加 22%,从而,从而使得其制品尺寸使得其制品尺寸反应烧结工艺的优点:反应烧结工艺的优点:J 纤维或晶须的体积分量可以相当大;纤维或晶须的体积分量可以相当大;J 可用于多种连续纤维预制体;可用于多种连续纤维预制体;J 大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,所以可避免增强纤维的损坏。

所以可避免增强纤维的损坏J 高气孔率难以避免高气孔率难以避免 3.1普通工艺介绍普通工艺介绍3.1.3 热压热压-反应烧结工艺反应烧结工艺 (Hot pressing-reaction bonding method) 3.1普通工艺介绍普通工艺介绍3.1.3 热压热压-反应烧结工艺反应烧结工艺 (Hot pressing-reaction bonding method) 3.1普通工艺介绍普通工艺介绍3.1.4 短纤维或晶须增强复合材料的制备工艺短纤维或晶须增强复合材料的制备工艺连续长纤维增强的复合材料的主要特点是具有方向性连续长纤维增强的复合材料的主要特点是具有方向性短纤维或晶须与陶瓷浆料混合,烘干,热压短纤维或晶须与陶瓷浆料混合,烘干,热压SiC晶须晶须 Si3N4 浆料浆料混混 合合 加入乙醇,球磨加入乙醇,球磨过过 滤滤 干干 燥燥 80 ℃,, 50 h 3.1普通工艺介绍普通工艺介绍3.1.4 短纤维或晶须增强复合材料的制备工艺短纤维或晶须增强复合材料的制备工艺湿湿 混混 加入有机粘结剂加入有机粘结剂 注射成型注射成型 去除粘结剂去除粘结剂 400 ℃,, 氮气氮气 锻锻 烧烧 1400 ℃,,1 h, 氩气,氩气, 热等静压热等静压 1600 ℃,,4 h, 200 MPa 3.2新型工艺介绍新型工艺介绍所谓的新型工艺都是近二十年发展起来的,主要应用于航所谓的新型工艺都是近二十年发展起来的,主要应用于航空航天等高技术领域的生产先进陶瓷基复合材料的工艺。

空航天等高技术领域的生产先进陶瓷基复合材料的工艺3.2.1液态浸渍法液态浸渍法 关键是控制液态关键是控制液态基体的流动性基体的流动性 3.2新型工艺介绍新型工艺介绍3.2.1液态浸渍法液态浸渍法 制成的预制体都有网络孔隙,由于毛细作用陶瓷熔体可渗制成的预制体都有网络孔隙,由于毛细作用陶瓷熔体可渗入这些孔隙入这些孔隙施加压力或抽真空都将有利于浸渍过程的进行可用施加压力或抽真空都将有利于浸渍过程的进行可用Poisseuiue方程来计算陶瓷熔体的浸渍高度,前提是假定预制方程来计算陶瓷熔体的浸渍高度,前提是假定预制件中的孔隙呈一束束有规则间隔的平等通道:件中的孔隙呈一束束有规则间隔的平等通道: r 是圆柱型孔隙通道的半径,是圆柱型孔隙通道的半径,t 为时间,为时间,  是浸渍剂的表面能,是浸渍剂的表面能, 是接触角,是接触角, 是粘度 3.2新型工艺介绍新型工艺介绍3.2.1液态浸渍法液态浸渍法 液态浸渍法的另一方面液态浸渍法的另一方面是可用于拉挤制备边续是可用于拉挤制备边续纤维增强的玻璃陶瓷基纤维增强的玻璃陶瓷基复合材料复合材料 3.2新型工艺介绍新型工艺介绍3.2.1液态浸渍法液态浸渍法 优点:优点:J 基体陶瓷用一步简单工艺即可成型;基体陶瓷用一步简单工艺即可成型;J 所得到的基体均匀性好。

所得到的基体均匀性好缺点:缺点:L 由于陶瓷材料熔点很高,因此就意味着陶瓷熔体与增强相由于陶瓷材料熔点很高,因此就意味着陶瓷熔体与增强相之间较强的化学反应倾向之间较强的化学反应倾向L 由于陶瓷熔体的高粘度,浸渍预制体较困难由于陶瓷熔体的高粘度,浸渍预制体较困难L 由于陶瓷基体与增强相之间热膨胀系数的差别可能导致基由于陶瓷基体与增强相之间热膨胀系数的差别可能导致基体的裂纹解决的办法是选用热膨胀系数相近的基体与增体的裂纹解决的办法是选用热膨胀系数相近的基体与增强材强材料 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 是通过熔融金属与气体反应直接形成陶瓷基体是通过熔融金属与气体反应直接形成陶瓷基体 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 Al + 空气空气 Al2O3Al + 氮气氮气 AlN 最终得到的是三维含有最终得到的是三维含有 5 - 30 % 未反应金属相互连接的陶未反应金属相互连接的陶瓷材料如果将增强颗粒放入熔融金属表面,则会在颗粒周围瓷材料如果将增强颗粒放入熔融金属表面,则会在颗粒周围形成陶瓷形成陶瓷。

3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 锆熔体与锆熔体与B4C直接反应制取直接反应制取 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 此种工艺中控制反应动力学是非常重要的因为化学反应此种工艺中控制反应动力学是非常重要的因为化学反应的速率决定了陶瓷生长的速度,一般陶瓷生长速率为的速率决定了陶瓷生长的速度,一般陶瓷生长速率为 1 mm/hr所生产的部件尺寸可达所生产的部件尺寸可达 20 cm. 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 3.2新型工艺介绍新型工艺介绍3.2.2直接氧化法直接氧化法 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI)简单地说简单地说CVI工艺需要:工艺需要:² 进气系统;进气系统;² 一个化学气相沉积反应器,其中能够加热基底与导一个化学气相沉积反应器,其中能够加热基底与导入反应入反应气体;气体;² 尾气处理系统。

尾气处理系统 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI) 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI)实际上这是一种与制备陶瓷材料相似的化学气相沉积方法实际上这是一种与制备陶瓷材料相似的化学气相沉积方法在在1200 - 1400 K的温度下:的温度下:CH3Cl3Si(g) SiC(s) + 3HCl(g)有的时候还可以用原料气,如氧化铝基体复合材料的制备,有的时候还可以用原料气,如氧化铝基体复合材料的制备,在在 950 - 1000 ℃和和 2-3 kPa 的压力下的压力下: H2(g) + CO2(g) H2O(g) + CO (g) 2AlCl3(g) + H2O (g) Al2O3(s) + 6 HCl(g)2AlCl3(g) + 3H2(g) + 3CO2(g) Al2O3(s) + 3CO(g) + 6HCl(g) 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI) 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI)CVI 工艺的优点:工艺的优点:J 制备的复合材料在高温下仍有好的机械性能;制备的复合材料在高温下仍有好的机械性能;J 可以制备大尺寸、复杂形状和近净形的部件;可以制备大尺寸、复杂形状和近净形的部件;J 适用于很多种类的陶瓷基体与增强纤维。

适用于很多种类的陶瓷基体与增强纤维 缺点:缺点:L 速度慢、成本高速度慢、成本高 3.2新型工艺介绍新型工艺介绍3.2.3 化学气相浸渍法化学气相浸渍法 (Chemical Vapor Impregnation, CVI) 3.2新型工艺介绍新型工艺介绍3.2.4 溶胶溶胶 - 凝胶法凝胶法 (Sol - Gel) 工艺步骤:工艺步骤:² 制备陶瓷基体组元溶胶;制备陶瓷基体组元溶胶;² 加入增强相(颗粒、晶须、纤维等)并使其均匀分布于溶加入增强相(颗粒、晶须、纤维等)并使其均匀分布于溶胶中;胶中;² 得到稳定均匀分布有增强相的陶瓷基体组元凝胶;得到稳定均匀分布有增强相的陶瓷基体组元凝胶;² 干燥,压制,烧结后即可形成复合材料干燥,压制,烧结后即可形成复合材料 3.2新型工艺介绍新型工艺介绍3.2.4 溶胶溶胶 - 凝胶法凝胶法 (Sol - Gel)连续纤维增强陶瓷基复合材料示意图连续纤维增强陶瓷基复合材料示意图 3.2新型工艺介绍新型工艺介绍3.2.4 溶胶溶胶 - 凝胶法凝胶法 (Sol - Gel)真空浸渍增强真空浸渍增强陶瓷基复合材料示陶瓷基复合材料示意图 3.2新型工艺介绍新型工艺介绍3.2.4 溶胶溶胶 - 凝胶法凝胶法 (Sol - Gel)优点:优点:² 陶瓷基体成分容易控制;陶瓷基体成分容易控制;² 加工温度较低;加工温度较低;² 得到的复合材料的均匀性好。

得到的复合材料的均匀性好缺点:缺点:² 较大的收缩率;较大的收缩率;² 生产效率低生产效率低 3.2新型工艺介绍新型工艺介绍3.2.5金属间化合物基体复合材料的制备金属间化合物基体复合材料的制备基本概念基本概念金属间化合物是以金属元素或类金属元素为主要组成的二元系金属间化合物是以金属元素或类金属元素为主要组成的二元系或多元系中出现的或多元系中出现的中间相中间相第一类为常见的有序合金,如第一类为常见的有序合金,如CuAu和和 Cu3Au即即是典型的金属是典型的金属间化合物,主要仍为金属键间化合物,主要仍为金属键第二类在其化学式规定成分两侧有个成分范围,但是熔点以前第二类在其化学式规定成分两侧有个成分范围,但是熔点以前或是相图上的反应分解以前其原子有序排列都有是稳定的,或是相图上的反应分解以前其原子有序排列都有是稳定的,Ni2Al3 和和Ni3Al 在其包晶反应分解之前都是结构稳定的化合物在其包晶反应分解之前都是结构稳定的化合物第三类金属间化合物的化学式规定成分两侧不再有成分范围第三类金属间化合物的化学式规定成分两侧不再有成分范围后两类金属间化合物中多为离子键或共价健后两类金属间化合物中多为离子键或共价健。

3.2新型工艺介绍新型工艺介绍3.2.5 金属间化合物金属间化合物 基体复合材料基体复合材料 的制备的制备 3.2新型工艺介绍新型工艺介绍3.2.5金属间化合物基体复合材料的制备金属间化合物基体复合材料的制备 3.3工艺总结工艺总结 第四章第四章 陶瓷基复合材料界面陶瓷基复合材料界面界面的定义:两相(增强相与基体)的界面的定义:两相(增强相与基体)的界面界面是一个表是一个表面,通过这个表面材料的性能,如原子晶格、密度、面,通过这个表面材料的性能,如原子晶格、密度、弹性模量、热膨胀系数、拉伸强度、断裂韧性等都有弹性模量、热膨胀系数、拉伸强度、断裂韧性等都有明显的不连续性明显的不连续性复合材料的界面复合材料的界面² 复合材料中的界面面积很大;复合材料中的界面面积很大;² 通常情况下,增强相与基体组成的界面都没有达通常情况下,增强相与基体组成的界面都没有达到热力学平衡到热力学平衡 第四章第四章 陶瓷基复合材料界面陶瓷基复合材料界面4.1复合材料内的界面面积复合材料内的界面面积一块复合材料的长、宽、高别为一块复合材料的长、宽、高别为l、、w、、h,,其中含有其中含有 N 根根长为长为 l、、直径为直径为 d 的连续纤维,则纤维的体积分数为:的连续纤维,则纤维的体积分数为: 如果定义界面面积为如果定义界面面积为IA,, 则有:则有:IA = N· ·d·l 4.1复合材料内的界面面积复合材料内的界面面积从上面二式中可得:从上面二式中可得:设这块复合材料的体积为设这块复合材料的体积为 1 m2 ,,Vf为为 0.25,, 则有则有 4.1复合材料内的界面面积复合材料内的界面面积 4.1复合材料内的界面面积复合材料内的界面面积对于颗粒增强的复合材料来说,可以计算得到:对于颗粒增强的复合材料来说,可以计算得到:若若VP 4.2复合材料内的界面晶体学性质复合材料内的界面晶体学性质从晶体学角度看,界面有共格、半共格和非共格三种。

从晶体学角度看,界面有共格、半共格和非共格三种 4.2复合材料内的界面晶体学性质复合材料内的界面晶体学性质 4.3浸润性浸润性浸润性代表了一种液体在一种固体表面扩展的能力浸润性代表了一种液体在一种固体表面扩展的能力 4.3浸润性浸润性当一个液滴在固体界面时,在热力学上只有当一个液滴在固体界面时,在热力学上只有 sl +  lv <  sv液滴才能在固体表面扩展开来液滴才能在固体表面扩展开来 达到平衡的条件是:达到平衡的条件是: sl +  lv cos  =  sv其中其中 就是接触角:就是接触角: 4.3浸润性浸润性  = 0°时,液体完全浸润固体;时,液体完全浸润固体; 0°<   < 180°时,液体部分浸润固体;时,液体部分浸润固体;   = 180°时,完全不浸润时,完全不浸润随着随着 值下降,浸润的程度增加实际上当值下降,浸润的程度增加实际上当   > 90°时就认时就认为不发生液体浸润为不发生液体浸润 浸润与界面的粘结是不同的,浸润只是强粘结界面的必要浸润与界面的粘结是不同的,浸润只是强粘结界面的必要条件,而非充分条件。

条件,而非充分条件 4.4陶瓷基复合材料界面的粘结陶瓷基复合材料界面的粘结两相界面的粘结(粘接、粘合或粘着等)方式有多种,如两相界面的粘结(粘接、粘合或粘着等)方式有多种,如静电粘结、机械作用粘结、浸润粘结、反应粘结等等静电粘结、机械作用粘结、浸润粘结、反应粘结等等对于陶瓷基复合材料来讲,界面的粘结形式主要有两种,对于陶瓷基复合材料来讲,界面的粘结形式主要有两种,即机械粘结和化学粘结即机械粘结和化学粘结² 机械粘结机械粘结① 由于基体的收缩率较大,冷却收缩后基体将增强相包裹产由于基体的收缩率较大,冷却收缩后基体将增强相包裹产生压应力生压应力② 通过渗透、高温扩散等基体渗入或浸入增强纤维的表面而通过渗透、高温扩散等基体渗入或浸入增强纤维的表面而形成机械结合形成机械结合 4.4陶瓷基复合材料界面的粘结陶瓷基复合材料界面的粘结界面的剪应力界面的剪应力 为:为: i = i 为摩擦系数,为摩擦系数,机械粘结为低能量机械粘结为低能量弱粘结,其界面强度较弱粘结,其界面强度较化学粘结低化学粘结低 4.4陶瓷基复合材料界面的粘结陶瓷基复合材料界面的粘结² 化学粘结化学粘结通过原子或分子的扩散在界面上形成了固溶体或化合物,通过原子或分子的扩散在界面上形成了固溶体或化合物,此时即为化学粘结。

此时即为化学粘结扩散控制的反应中,有扩散控制的反应中,有其中,其中,x 是反应区的厚度,是反应区的厚度,D是扩散系数,是扩散系数,t 则为时间而且则为时间而且 D 可按照可按照Arrhenius方程计算:方程计算: 4.5陶瓷基复合材料界面的作用陶瓷基复合材料界面的作用4.5.1界界面的作用面的作用 4.5陶瓷基复合材料界面的作用陶瓷基复合材料界面的作用 4.5陶瓷基复合材料界面的作用陶瓷基复合材料界面的作用4.5.2 界面的改善界面的改善 4.5陶瓷基复合材料界面的作用陶瓷基复合材料界面的作用 。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档