高斯高斯,C.F.(Gauss,Carl Friedrich) 1777年4月30日生于德国不伦瑞克;1855年2月23日卒于格丁根.数学、天文、物理、大地测量. 高斯出生在一个普通城市工人家庭.其父格布哈德•迪特里希•高斯(Gebhard Dietrich Gauss)受教育不多,但能写会算,为人勤奋,靠手艺维持家庭生计,做过园林工人、运河工人、街道小贩,还出任过丧葬机构的会计.据说迪特里希•高斯虽忠厚却性情暴躁,在家尤为专制.小高斯是他第二个妻子的独子.高斯的母亲多罗西娅•本茨(Dorothea Benze)出身石匠家庭,聪慧而善良,能读但不会写,婚前在一个贵族家当女仆,在其夫去世后长期随高斯生活,母子相伴,直至96岁谢世.多罗西娅的弟弟天份颇高,是高斯长辈中智力最突出的一位,他靠自己钻研成为艺术锦缎的著名织匠. 高斯幼年时的生活跟当时一般市民家的孩子雷同.有一个故事说因父母为生计奔波,小高斯有时无人照料,大约在3或4岁时,曾堕入离家不远的运河,几乎溺死.另一个故事说高斯自幼对数字有特殊的敏感,在3岁时就发现过父亲算账时的计算错误这些故事大都是高斯晚年对人谈起的.高斯成年后还常对人说,他在学会说话前就会计算了. 高斯接受教育的状况受制于当时德国的社会背景.他出生的城市不伦瑞克是座古城,在17世纪初仍是能跟汉堡和阿姆斯特丹相媲美的贸易中心.后因城市民众暴动和欧洲30年战争的破坏而衰落.1671年它失去政治独立地位,并入不伦瑞克-沃尔芬比特尔(现德国下萨克森州)公爵领地;1673年成为该领地的首府.在18世纪,它像其他德国城邦一样,经济政治状况落后于资本主义蓬勃发展中的英国和法国.高斯降生时不伦瑞克的统治者是 C. W.费迪南德(Carl Wilhelm Ferdinand)公爵,一位久经沙场的贵族;他按传统的封建方式管理他的领地:典型的特征是以农业为其财政的主要来源,并保护组织起来的个体织匠抵制纺织机械的使用.他在教育方面虽未实行义务教育,但他的大多数臣民都能识字并掌握一些初等算术知识.至于社会下层有天赋的儿童要想获得较高等的教育,则非有贵族、富商或其他有影响的保护人的资助不可. 1784年,高斯像普通市民的孩子一样入小学读书.他进的圣•凯瑟琳小学给他带来了好运.该校教师 J.G.比特纳(Bttner)称职而热心,他教的班由50多名年龄各异、原有知识参差不齐的学生组成;比特纳发现高斯才智出众,特意从汉堡弄来一本算术教科书给高斯读.一个故事说,一次高斯在班上几乎不加思索就算出了1+2+3+…+100的和,令比特纳惊讶不已.当时任比特纳助手的 M.巴特尔斯(Bartels)只比高斯大8岁,酷爱数学(后到俄国喀山大学任教授,是非欧几何创立者之一罗巴切夫斯基的老师),对高斯的数学才能特别器重,他们常在一起讨论算术和代数问题. 高斯的父亲不希望儿子继续升中学读书.让子女多读书并非当地工人阶层的风尚;读小学时,高斯晚上经常秉父命上织机织布.经老师们的帮助,高斯于1788年进入预科学校(相当于现在的中学),这里班级的编排较正规,但课程颇显陈旧,而且过份强调古典语言特别是拉丁语的教学.高斯的目标是学术上的深造,当时的人文学科特别是科学经典都是拉丁文写的,于是他充分利用学校的条件攻读拉丁语,不久成绩就名列前茅.他还学会了使用高地德语(路德翻译圣经用的那种德语,即现在的标准德语),高斯原来只会使用本地方言.至于他的数学程度,教师在看了他的第一次数学作业后便认为,高斯已没有必要上该校的数学课了. 1791年,位于不伦瑞克的卡洛琳学院的教授 E.A.W.齐默尔曼(Zimmermann)向费迪南德公爵引介了14岁的天才少年高斯.公爵接见高斯时为他的朴实和腼腆所动,欣然应允资助高斯的全部学业.此后,高斯在经济上便独立于父母,父亲也不再反对儿子的继续深造. 1792年,高斯入家乡的卡洛琳学院(Brunswick Collegium Carolinum)学习,开始脱离家庭的独立生活.这所学校不同于普通的大学,它由政府直接兴办和管理,目标是培养合格的官吏和军人,在德国各城邦的类似学校中属于最优秀之列,其教学强调科学方面的科目.高斯在校的三年间,全身心地投入学习和思考,获得了一系列重要的发现:入学前他就研究算术-几何平均(1791),此时发现了它和其他许多幂级数的联系(1794);发现最小二乘法(1794);考虑了几何基础问题,即平行公设在欧几里得几何中的地位(1792);由归纳发现数论中关于二次剩余的基本定理,即二次互反律(1795);研究素数分布,猜想出素数定理(1792).在这一时期,贯穿高斯一生的研究风格的一个重要方面已趋成熟:不停地观察和进行实例剖析,从经验性质的研究中获得灵感和猜想.高斯在学院学习期间还开始了对数学经典著作的钻研,阅读了I.牛顿(Newton)的《自然哲学的数学原理》(Philosophiae naturalis Principia mathematica)、 L.欧拉(Euler)的代数与分析著作和J.L.拉格朗日(Lagrange)的若干论著,以及雅格布•伯努利(Jacob Bernoulli)的《猜度术》(Ars conjectandi)等. 高斯的志向不是谋取官吏的职位,而在于他最喜好的两门学问:数学和语言.1795年,他离开费迪南德公爵管辖的领地,到格丁根大学就读.格丁根大学的办学方式追随英国的牛津和剑桥大学,资金较其他德国大学充裕,较少受政府和教会的管理和干涉.高斯选中这所大学另有两个原因.一是它有藏书(尤其是数学书)极丰的图书馆;二是它有注重改革、侧重科学的好名声.当时的格丁根对学生可谓是个“四无世界”:无必修科目,无指导教师,无考试和课堂的约束,无学生社团.高斯完全在学术自由的环境中成长,将来从事什么职业完全由他自己抉择.入学初期,语言学家 G.海涅(Heyne)对高斯 作数学家还是语言学家可能曾在高斯脑际徘徊.有两个支持这种看法的旁证:高斯到校第一年所借阅的25本书中,仅有5本科学著作,其余皆属人文学科,而且高斯终其一生始终未改对语言和文学的爱好;那个时代以数学为职业者收入不丰,高斯当时仍在靠公爵的补贴生活,寻找有较高收入的职业是高斯一生中经常考虑的问题. 1796年是高斯学术生涯中的第一个转折点:他敲开了自欧几里得时代起就搅扰着数学家的尺规作图这一难题的大门,证明了正十七边形可用欧几里得型的圆规和直尺作图.这一成功最终决定了他走科学之路而非文学之路,高斯真正认识了自己的能力之所在.在注明3月30日的“科学日记”中,高斯写道:“圆的分割定律,如何以几何方法将圆分成十七等分”.所谓“科学日记”是1898年偶然在高斯的孙子的财产中发现的一本笔记;高斯在上面记录他的众多科学发现,并称之为 Notizen journal(日志录).日记中简要记载着他自1796年至1814年间的共146条新发现或定理的证明.由于高斯的许多发现终身没有正式发表,这本日记成了判定高斯学术成就的重要依据. 在格丁根学习期间,高斯在日记中记录了许多重要信息: 1796年4月8日,得到数论中重要定理二次互反律的第一个严格证明; 1797年1月7日,开始研究双纽线; 1797年3月19日,认识到在复数域中,双纽线积分具有双周期; 1797年5月,由实例计算得到算术-几何平均和双纽线长度间的一些关系(双纽线函数是椭圆函数的一种); 1797年10月,证明了代数基本定理. 1798年秋,高斯突然离开格丁根回到故乡,原因不详,很可能是费迪南德公爵不愿由他资助的学生在他所辖的领地之外的大学获取文凭.正是在公爵的要求下,高斯于1799年接受了海尔姆斯台特(Helmstedt)大学的博士学位,名义上的导师是 J.F.普法夫(Pfaff),当时德国最负盛名的数学家,高斯在格丁根求学期间曾访问过他,但尚不知他们之间有无学术上的联系.[有一则故事表明他们二人在数学界的地位.在高斯成名后,他的好友 A.洪堡(Humboldt)曾询问法国大数学家、力学家 P.S.M.拉普拉斯(Laplace)谁是德国最伟大的数学家.拉普拉斯答是普法夫,洪堡惊鄂之余追问道:那么高斯呢?拉普拉斯戏谑地说:高斯是全世界最伟大的数学家!]高斯博士论文的题目很长:“单变量有理整代数函数皆可分解为一次或二次式的定理的新证明”(Demo-nstratio nova theorematis omnem functionem algelraicam rati-onalem integram unius variabilis in factores reals primi vel secundi gradus resolvi posse,1799年8月在公爵资助下出版).高斯在给他大学时的同学 W.波尔约(Bolyai)的信(1799年12月16日)中说:“题目相当清楚地讲明了文章的主要目的,虽然它只占篇幅的三分之一,其余是讲述历史和对其他数学家[J.R.达朗倍尔(d’Alembert)、L.A.de 布干维尔(Bougainville)、欧拉、拉格朗日等]相应工作的批判,以及关于当代数学之浮浅的各种评论.”此文反映了高斯研究风格的另一个方面:强调严密的逻辑推理,这是区别于18世纪大部分数学家的高斯风格的主要特征.在此论文中,他并未具体构造出代数方程的解,而是一种纯粹的存在性证明.这类证明此后便在数学中大量涌现.还应指出,他的证明虽然必须依赖复数,但因当时的数学家仍在为虚数的本质争论不休,所以高斯尽量避免直接使用虚数.他预先假定了直角座标平面上的点与复数的一一对应。
而将论及的函数分为实部和虚部分别加以讨论.高斯的证明也并非在逻辑上完美无缺,如他视连续函数的一些性质自然成立而未加证明[这些性质后来为捷克数学家 B.波尔查诺(Bolzano)首先证明].高斯可能认识到这一问题,此后又给出了代数基本定理的另外三个证明(1815,1816,1849),最后的证明是为庆祝他获博士学位50周年而作,方法跟博士论文基本一致,只是“现在大家都认清了复数是什么”,所以他直接运用了复数. 自1796年解决正十七边形的作图到1801年,是高斯学术创造力最旺盛的时间.按数学史家 O.梅(May)统计,在这6年间(19岁—24岁)高斯提出的猜想、定理、证明、概念、假设和理论,平均每年不少于25项,其中最辉煌的成就是1801年发表的《算术研究》(Disquisitiones arithmeticae),它把过去一直是零星成果堆砌成的数论,织成一张结构紧凑、自成系统的网;以及在1801年中根据少量观测数据准确预报小行星“谷神星”的运行轨道.天文学是当时科学界最关注的课题,高斯的这项预报引起了轰动.上述两项成就使他不仅在数学界而且在科学界一举成名. 1802年初,圣彼得堡科学院聘高斯为外籍院士;同年9月又邀请他出任圣彼得堡天文台台长,这是极崇高的荣誉.高斯出于对公爵的忠心,也因公爵打算为他创造更好的工作条件(计划专为高斯在不伦瑞克修建小天文台)并给他提薪,高斯最终决定留在家乡. 此后,高斯虽从未完全放弃对数论、代数、几何及分析学的研究,但其主要精力和时间逐步转向更有实际效用的科学,如天文学、测地学、物理学和应用数学.学术研究重点的转移也带来了高斯结交朋友方面的转折.高斯在纯数学的研究中是相当孤独的,没有同事和助手,即使在他创作高峰期也几乎未进行过直接的学术交流.W.波尔约虽是跟高斯有过长达50年通信联系的数学家,但未见他们在数学思想上的深入讨论.唯一的例外是法国女数学家 S.热尔曼(Sophie Germain),她曾化名男子和高斯通信(1804—1805)讨论数论问题,二次互反律的一个证明就跟她的想法有关.但是,在天文学界和物理学界,高斯却有不少挚友,他们不仅切磋学术,而且过往甚密.现存的7000多封高斯的通信中,跟这些人的信件占极大比例. 1802—。