文档详情

求递推数列通项的特征根法与不动点法

博****1
实名认证
店铺
DOCX
21.17KB
约2页
文档ID:461312444
求递推数列通项的特征根法与不动点法_第1页
1/2

求递推数列通项的特征根法与不动点法一、形如a 2 = pa 1 + qa (p, q是常数)的数列形如a = m ,a = m ,a = pa + qa (p, q是常数)的二阶递推数列都可用特征根法求得通项1 1 2 2 n+2 n+1a,其特征方程为x2 = px + q…①若①有二异根以,P,则可令a =can + c Pn(c ,c是待定常数) n 1 2 1 2若①有二重根a = P,则可令a = (c + nc )a n (c , c是待定常数) n 1 2 1 2再利用a = m , a = m ,可求得c ,c,进而求得a .1 12 2 1 2 n例1.已知数列{a }满足a = 2,a = 3,a = 3a - 2a (n & N*),求数列{a }的通项a .n 1 2 n+2 n+1 n n n解:其特征方程为x 2 = 3x-2,解得x = 1, x = 2,令a = c・1n + c - 2n,1 2 n 1 2,[a = c + 2c = 2 c1 1由"=;+ 4c2 = 3,得"=1,二气=1 + 2n-1.V 2 1 2 [ 2 2例2.已知数列{a }满足a = 1,a = 2,4a = 4a - a (n e N*),求数列{a }的通项a .n 1 2 n + 2 n +1 n n n解:其特征方程为4x2 = 4x -1,…… 1^ / \( 1 \n解得 x = x =—,令 a =(c + nc )-1 2 2 n 1 2 ^ 2)1a = (c + c ) x = 11 1 2 2,a = (c + 2c ) x = 22 1 2 43n - 2二 a = n 2n-1二、形如a =竺HB的数列n+2 Ca + D对于数列a = An^B, n+2 Ca + Da1 = m, n e N*(A, B, C, D 是常数且 C。

0, AD-BC0 )其特征方程为x = A^Cx + D变形为Cx2 + (D - A)x - B = 0…②若②有二异根a, P,则可令%1三=c -匚a (其中c是待定常数),代入a ,a的值可求 a -p a -p 1 2得c值.公比为c的等比数列,于是这样可求得气.这样数列]^^ \是首项为氏片[a - p J a - pn 11若②有二重根a=p,则可令 a — an+11 ... . ..—— + c (其中C是侍定常数),代入a「a2的值可 n求得c值.这样数列]是首项为,[a —aJ a —ann此方法又称不动点法.公差为C的等差数列,于是这样可求得气.例3.已知数列{a }满足a = 2,a =年二(n > 2),求数列{a }的通项a .n 2a +1 n nn-1解:其特征方程为x = * + 2,化简得2x2 — 2 = 0,解得x = 1,x = —1,令 ~- = c .土—-2 x +1 1 2 a +1 a +14 1由 a = 2,得 a = 5,可得 c = — 3,数列[匕二]是以氏21 =1为首项,以-1为公比的等比数列,[a +1J a +1 3 33n — (—1)n.an 3n + (—1)n2a 1例4.已知数列{a }满足a = 2,a =—n——(n g N*),求数列{a }的通项a .n 1 n +1 4a + 6 n n解:其特征方程为x = •',即4x2 + 4x +1 = 0,解得x = x =— —4x+6 1 2 2由a = 2,得a =—,求得c = 1,1 2 14c 、数歹列V —j- >是以an + 22 ,、,一=5为首项,以1为公差的等差数列,1 2 3——=_ + (n -1)-1 = n — _,」5 5a + 2..a13 - 5n10n - 6。

下载提示
相似文档
正为您匹配相似的精品文档