三坐标测量技术规范1 测量准备 21.1 基本原则 21.2 测量准备 22 工件装夹 22.1 产品形状的保持 22.2 装夹方位 22.3 装夹技巧 23 测量 33.1 测量的内容和次序 33.2 基准点组的测量 33.3 线的测量 33.4 面的测量 43.5 对称部分的测量 53.6 测量密度 53.7 测量可靠性 54 测量数据管理 54.1 数据分类与分割 64.2 数据文件命名 64.3 填写测量报告 64.4 数据保存 72 数据处理 72.1 数据转换 72.2 重定位整合 72.2.1 应用背景 72.2.2 重定位整合原理 72.2.3 重定位整合操作 92.3 对称基准重建 102.4 变形处理 103 设备维护 10附1 :三坐标测量报表 111 测量准备1.1 基本原则产品测量遵循以下基本原则:所有零部件应尽可能在装配状态下测量,在装配状态下无法测量的部分可分两种情况处理:一是零件之间互相遮挡的部分,可采取逐层拆卸逐层测量的方法进行二是零件的反面,应采用重定位的方法进行在拆卸任何零件之前均应测量其重定位基准(重定位基准点或边界线),并注意在拆卸过程中保证产品上的所有零件不发生变形。
1.2 测量准备为了方便测量,提高测量速度,在测量前应对零件上不明显的轮廓(倒圆)进行描点点应描在轮廓的中心线上,并尽可能光顺可通过观察平行光(日光或日光灯)在轮廓上反射光线形成的条纹来辅助描点2 工件装夹2.1 产品形状的保持确保装配体及其每个零件在测量状态下的形状与使用状态下一致,不得使产品在装夹时发生变形对于刚性较好的装配体,应在装夹时自然放置在支架上,然后进行加固而对于柔性或已经产生变形的工件,则应用强行约束使其形状恢复至使用状态,然后再安装到支架上固定应利用支架、垫块等辅助工具保证每一个零件的各部分以及整个装配体的刚性特别注意在对装配体逐层拆卸、逐层测量时,应确保每一零件不发生变形2.2 装夹方位将工件放置在三坐标测量机的测量范围内,如不能在一次装夹位置下完成测量,则可进行多次定位,称为重定位重定位应注意以下原则:(1)使每次定位所能达到的测量范围最大化,以减少重定位次数2)每次定位应与之前的某次定位有尽可能大的重合测量区域,以保证定位基准的设置和重定位变换的精度3)应尽可能减少重定位变换(即每次定位向第一次定位进行坐标位变换)的中间环节尽可能少(详见数据处理部分有关“重定位”的叙述),以减少累积误差。
工件的放置应便于测量人员的操作,将复杂部位放置在易于测量的位置重要的测量面应尽可能放置成水平或垂直状态,工件的对称面应尽可能平行于测量机的坐标平面2.3 装夹技巧(1)采用棉花堆积并浇502的方法可完成点接触的加固2)大变形产品在拆卸前可用麻线绷紧并固定在易于变形的位置,产品拆下后将其恢复至麻线绷紧的状态即可作为对装配状态的近似模拟3 测量3.1 测量的内容和次序测量的内容包括基准点、分型(边界)线、轮廓线、面、结构等测量的次序按如下原则制订:(1)先难后易:即先测量难度较大的部分2)先重后轻:即先测量重要的部分如基准点、分型线等3)先配合后个体:即先测量装配结合部分4)先整体后细节:即先完成主体的形位测量,再补充细节当然,在安排次序时,还要结合下面的具体情况灵活处理:(1)造型进度的需要2)在同一次定位下完成尽可能多的数据测量3)测量器具的局限如探针在同一方位下可测量尽可能多的数据,以减少探针的换位次数3.2 基准点组的测量基准点组由三个基准点组成,是进行重定位变换的依据基准点的生成及测量要求如下:(1)基准点必须设定在重复定位后可以测量到的范围内,最好能用于多次重复定位用针尖在产品表面(可贴纸)点出,要求点径微小(直径0.2mm以内)并且醒目。
2)重复测量可靠性和精度要求高,两次定位下的测量重复误差(指三点之间的间距测量重复误差)不超过0.2mm为此可以采取多次测量取平均值的方法提高可靠性3)基准点所形成的三角形面积要尽可能大,边长应有明显差异(大于5mm)3.3 线的测量当测量人员直接对边界线进行测量时,由于难以将探针尖对准边界线,因此常常造成较大的测量误差,效率也较低为此,可采用如下方法改进:在边界线某一侧的面(面1)上、并且在距边界线不远处(1mm以内)采点(称为边界附近测量点),然后测量边界线另一侧面(面2)的完整数据在造型时,先完成面2的制作,然后直接将边界附近测量点投影在面2上即可作为边界线测量结果图1中是两个典型情况的示意采用这一方法时有两点需要特别注意:一是边界附近测量点一定要在离边界足够近,以保证投影的准确性;二是面2的测量数据一定要完整,否则一旦面2无法制作,则边界线无法求出本方法将边界线的测量转化为边界线附近的面内点的测量,避开了对边界线的直接测量,不仅保证的测量精度,还有效提高了测量效率a)(b)图13.4 面的测量平面的测量应使测量点形成的多边形面积尽可能大,以保证测量精度曲面的测量应注意使扫描方向与曲面的长度方向垂直如图2(a)。
当曲面长度与宽度基本相同时,应考虑采用网格扫描,如图2(b)a)(b)图2当然,一些简单曲面如直纹面只需要测量上、下两条边界线即可对于特殊曲面的测量需要与造型人员协商确定3.5 对称部分的测量对称的曲面一般只需要测量一半轮廓线和结构除了完整测量其中一半之外,还需要对另外一半进行部分测量,以取得足以进行对称基准重建的数据在选择另一半用于对称基准重建的轮廓线进行测量时,应注意以下几点:(1)轮廓线的范围要足够大,最好在对称部分的全范围内分布2)要选择足够清晰、变形小、重要的轮廓线进行测量,一般采用分型线3)轮廓线可以分段测量,测量密度也可适当减小3.6 测量密度测量密度应掌握两个基本原则:(1)最少增半:即按需要的最小测量密度的1.5倍进行测量,以确保数据的完备性如圆弧线的测量至少需要三点,实际测量4到5个点2)急密缓疏/疏密有致:在曲率较大处测量密度高,曲率较小处测量密度低在多个面的交会处、变化较多的细节部分等需要增加密度,以确保测量的完备性3.7 测量可靠性确保测量数据准确、数据保存可靠的几个措施:(1)为防止测量设备精度飘移,必须在一定的时间间隔内(建议为半小时)进行零点复校如出现零点超差(一般为0.2mm),则该时间间隔内的测量数据全部报废。
2)同一次零点校验的操作应做两次,并进行对比以防止操作失误3)在多名测量人员进行配合测量时,应按零件、测量属性进行明确的分工,以防止漏测及重复测量即使增加了零点校验的次数,总体上还是提高了效率4)重要的工件应制作并测量重定位基准,以备补测数据4 测量数据管理2.1 数据转换数据转换的任务和要求:(1)将测量数据格式转化为CAD软件可识别的IGES格式,合并后以产品名称或用户指定的名称分类保存2)不同产品、不同属性、不同定位、易于混淆的数据应存放在不同的文件中,并在IGES文件中分层分色数据转换使用《三坐标测量数据处理系统》完成,操作方法见软件用户手册2.2 重定位整合2.2.1 应用背景在产品的测绘过程中,往往不能在同一坐标系将产品的几何数据一次测出其原因一是产品尺寸超出测量机的行程,二是测量探头不能触及产品的反面,三是在工件拆下后发现数据缺失,需要补测这时就需要在不同的定位状态(即不同的坐标系)下测量产品的各个部分,称为产品的重定位测量而在造型时则应将这些不同坐标系下的重定位数据变换到同一坐标系中,这个过程称为重定位数据的整合对于复杂或较大的模型,测量过程中常需要多次定位测量,最终的测量数据就必需依据一定的转换路径进行多次重定位整合,把各次定位中测得的数据转换成一个公共定位基准下的测量数据。
2.2.2 重定位整合原理工件移动(重定位)后的测量数据与移动前的测量数据存在着移动错位,如果我们在工件上确定一个在重定位前后都能测到的形体(称为重定位基准),那么只要在测量结束后,通过一系列变换使重定位后对该形体的测量结果与重定位前的测量结果重合,即可将重定位后的测量数据整合到重合前的数据中重定位基准在重定位整合中起到了纽带的作用,如图4所示图4图5给出了因被测量物体的尺寸超出了测量范围而必须进行两次定位的示意其中,图5(a)和图5(b)分别为第一次定位和第二次定位的情况在被测物体上选取不共线且在两次定位状态下均可测量的三个点A、B和C,称为重定位基准点设在第一次定位状态下测得A、B、C的坐标值分别为(x1,y1,z1)、(x2,y2,z2)和(x3,y3,z3)在第二次定位状态下测得的坐标值分别为(X1,Y1,Z1)、(X2,Y2,Z2)和(X3,Y3,Z3)由于工件发生过移动,如果不进行重定位整合,直接将两次定位下的测量数据合并,就会产生如图5(c)的结果如果我们利用一系列变换,将第二次定位下测量得到的A、B、C三点“拖动”至与第一次定位下的测量结果重合,同时第二次定位下的其它测量数据也跟着进行同样的变换,则可将第二次定位下的测量数据转换到第一次定位下的坐标系中,从而完成两次定位下的数据整合,如图5(d)。
除了利用基准点外,还常常采用基准线进行重定位整合,即在两次定位中分别测量产品上的同一条边界线或轮廓线(称为重定位基准线,如图5中标出的两条粗线段),然后将第二次定位下的测量数据进行一系列变换,使两次定位下的重定位基准线重合,即可将第二次定位测量数据整合到第一次定位中a)第一次定位(b) 第二次定位(c)直接合并的结果(d) 重定位整合的结果图42.2.3 重定位整合操作首先,重定位基准(无论是基准点还是基准线)必须设置在两次定位下都能进行精确测量的位置当需要进行两次以上的重定位时,应将所有重定位下的测量数据整合到第一次定位中如果在第N次定位与第一次定位之间不能设置重定位基准,则它不能直接与第一次定位进行整合,需要通过另外的定位间接地整合到第一次定位中例如,在某次测量中做了5次定位,其中第5次定位与第3次定位之间设置了重定位基准,而第3次定位与第一次定位之间存在重定位基准,则可先将第5次定位下的测量数据整合到第3次定位中,然后再与第3次定位一起整合到第一次定位中这一整合过程称为重定位整合路径,简写为5-3-1显然,重定位整合路径必须以1为结束,即最终整合到第一次定位中而且该路径越短越好,以减少中间过程的累积误差。
这就要求测量人员合理地规划重定位,使每次定位都能以最短的路径整合到第一次定位中三个重定位基准点构成一个重定位基准,称为一个重定位基准点组(简称基准点组),并以组号区分不同的基准点组在测量文件的命名规则中,基准点的属性以字母b表示,其后的数字表示基准点组号例如3-2b1和3-3b1分别表示在第2、3次定位下测得的零件3上的第1组基准点,即在两次定位下对同一组基准点的测量结果这一组基准点也就是第2次和第3次定位之间的重定位基准中以组号要求三点形成的三角形面积尽可能大同样,重定位基准线要求最大限度地覆盖测量范围,以减少重定位误差利用基准点进行重定位整合可通过《三坐标测量辅助处理系统》自动完成(操作方法见软件用户手册)而利用基准线进行重定位整合则需要手工完成在实际应用中,往往将两种重定位基准结合使用,即先用重定位点进行快速的初步整合,然后再利用基准线进行更细致的调整2.3 对称基准重建对称的产品在造型前必须确定其对称面(对称基准),称为对称基准重建具体方法是对产品进行一系列变换,使XZ坐标平面成为其对称基准在变换的过程中,不断将产品关于XZ平面作镜像,判断其在XZ平面的左右两部分在镜像后是否重合,若重合则表面产品所处的位置已经关于XZ平面对称,于是完成对称基准重建。
在造型时,只需要完成XZ平面一侧的建模,然后关于XZ平面镜像即得到另一侧的造型结果,从而保证产品的对称特征,并提高了效率对称基准重建可利用《三坐标测量辅助处理系统》快速完成,操作方法。