消费者购房行为特征的实证探讨摘要: 在住宅市场消费者行为探讨方面,国外探讨成果丰富,而国内尚处于起步阶段与主成分分析等方法相比,对应分析与最优尺度分析方法具有其独特的优势本文以广州市海珠区赤岗为例,采纳对应分析与最优尺度分析方法对消费者购房行为特征进行了实证探讨综合运用主成分分析、对应分析、最优尺度分析方法,会使消费者行为探讨更有深度 关键词:住宅市场;消费者行为;对应分析;最优尺度分析 Abstract: There are plenty of literatures about the consumers' behavior research in the residential market abroad, while the research is at the beginning stage in China. Compared with factor analysis, correspondence analysis and optimal scaling technique have unique advantages. The characteristics of consumers' behavior of buying houses in Chigang distric,t Guangzhou, have been analyzed with the both methods.The research of Consumers' behaviorwill be deepened if correspondence analysis, optimal scaling technique and factor analysis are adopted together. Key words: residential market; consumers' behavior; correspondence analysis; optimal scaling technique 一、引言 关于住宅市场中消费者行为的探讨,国外学者有诸多探讨成果。
1972年,Menchik探讨了消费者购房的偏好因素,他将购房偏好分为住房与地块特征、住房的可达性、自然环境、人造和非自然环境四个方面,并且重点探讨了消费者的环境偏好[1]1973年, Straszheim采纳入户调查的方法,探讨了居民对城市住房的需求特征[2]1974年,Onibokun评价了消费者购房满足度,并且对消费者购房知觉分为居住、环境、管理及公房项目限制4个子系统[3]1977年, Bible对影响消费者购房偏好的因素进行了新的划分,他将消费者购房偏好分为住房与地块特征、访友购物上班的接近性、公园绿地居住人群的身份与地位、房地产税等4个方面,并采纳因素成对比较法(Paired comparisontechnique)确定了上述4个因素的权重[4]1978年,Weicher运用统计分析的方法,对美国家庭的支付实力与购房行为进行了相关分析[5] Hempel和Jain对不同文化背景下的消费行为进行了阅历总结,其中关于消费者购房搜寻过程采纳多元回来分析方法建立了预料模型[6]1982年, Galster探讨了美国黑人与白人购房地点方面的自行隔离(Self-segregate)现象,并以多元回来分析的方法建立了房价与居住状况因子、邻里状况因子的函数模型[7]。
1985年, Bajic采纳阅历分析的方法,探讨了住宅市场中市场细分问题及消费者购房特征[8]1988年,Nelson和Rabianski采纳多维尺度分析、聚类分析方法对住房市场中的消费者偏好进行了探讨他们认为,影响消费者购房的因素主要有房地产的自然环境与邻里质量、建筑设计、可居住性和对外联系同时采纳实证分析的方法得出结论,即对于不同细分市场,影响消费者购房的偏好因素是相同的;但消费者在不同细分市场对购房偏好因素所持的权重不同[9]1997年,An-glin探讨了住宅市场中影响消费者购房的确定性因素[10]2002年,Haurin和Parcel探讨了消费者是否拥有私人住宅的状况对其孩子身心成长的影响[11]2003年,Harding, Knight和Sirmang探讨了消费者购房过程中的讨价还价实力与位势、住房空置等影响因素的关系[12] 由于国内住宅市场消费者行为探讨起先于20世纪90年头中期,有关探讨还特别少,绝大多数论文探讨内容是关于房地产市场需求状况及特征的一般分析,探讨方法多限于描述总结以及频数分析和交叉列联分析,仅有个别论文[13]采纳主成分分析与多元回来分析很多作者缺乏对国外同类探讨成果的了解,这一点可以从论文参考文献及探讨内容上判定。
目前在国内外房地产学界,作者尚未发觉采纳对应分析与最优尺度分析方法开展住宅市场消费者行为探讨的学术论文本文的探讨目的有二:一是探究对应分析与最优尺度分析在住宅市场消费者行为探讨过程中的运用方式与方法;二是尝试采纳以上方法对市场细分后的消费者群体特征进行精确描述与刻画 二、对应分析与最优尺度分析 对应分析(Correspondence analysis)与最优尺度分析(Optimal scaling)由荷兰Leiden高校DTSS课题组研制并于SPSS11. 0之后新增的两个应用程序[14]它们通过主成分分析来描述两个或多个分类变量各水平间的相关性,用多维图示方法反映变量之间的相互关系对应分析计算与运行的基本过程与方法是: (1)选择变量,依据有关标准进行分类2)输出对应分析表对应分析表实际是两个变量的行×列表,表中的数字显示两个变量各种类别的大致对应关系假如行×列中有关数据普遍存在过多或过少,说明变量分类有可能存在问题,须要重新进行分类3)测度分类变量的距离有卡方与欧式距离两种卡方距离适用于离散型变量,欧式距离适用于连续型变量4)计算有关统计指标包括维数、奇异值、惯量、总的卡方检验及P值,其中奇异值即惯量的平方根,相当于相关分析中的相关系数;惯量用于说明对应分析各个维度的结果能够说明列联表中两变量联系的程度。
5)输出并分析对应分析图探讨对应分析图主要应留意两点:第一,视察变量分别在第一维(横轴)和其次维(纵轴)方向上的区分状况,假如同一变量不同类别在某个方向上距离较远,说明这些类别在该维度上区分较大;否则说明这些类别在该维度上区分不大我们的视察应以区分较大的维度为主;其次,比较不同变量各个取值分类间的位置关系,落在从图形中心(0, 0)点动身相同方向上大致相同区域内的不同变量的分类点彼此有联系 与对应分析比较,最优尺度分析的主要区分是可应用于三个及其以上的变量之间的关系分析,其分析过程与对应分析类似由于最优尺度分析方法不像多元回来方法那样可以自动筛选变量,因此变量较多时可能会掩盖真实联系,同时使得图形一片混乱,难以看清所以,在实际运用中可以将最优尺度分析与对应分析结合运用,从中筛选出有价值的市场信息 和交叉列联分析相比,对应分析与最优尺度分析继承了主成分分析的数据化简与变量降维的优点;和主成分分析相比,对应分析与最优尺度分析具有以下显著优点:一是由于其采纳多维图示显示分析结果,因此克服了主成分分析结果艰涩难懂的弊端;二是主成分分析对分析数据的要求较高,要求输入的必需是量表型(Scale)的数据。
而对应分析与最优尺度分析适用的数据则宽泛得多,任何两个能够采纳频次进行交叉分析的变量,都可以运用对应分析与最优尺度分析的方法;三是主成分分析只能把变量在象限图中表示出来,而对应分析与最优尺度分析则可以把变量及其属性同时在一个坐标系中标定出来当然,对应分析与最优尺度分析也有其局限性:一是由于主成 分分析的输入数据是量表型的数据,因此,其结果可以用来进行假设检验(Hypothesis test),而对应分析与最优尺度分析的结果则无法进行假设检验;二是主成分分析的坐标轴是可以通过分析因子载荷来进行命名的,而对应分析与最优尺度分析的坐标轴却很难进行命名;三是主成分分析可以针对单个样本或者小群体绘制出单个变量或者多个变量的知觉图,而对应分析与最优尺度分析则必需依靠较多样本才能绘制出知觉图 三、数据来源与处理 在文献探讨的基础上[15],我们与房地产企业营销策划人员、售楼人员进行了一系列个别访谈,由此设计了调查问卷初稿在仔细听取了多名专业老师的看法并在部分潜在购房者中试填之后,我们对问卷初稿进行了修改最终形成正式问卷正式问卷主要采纳多项选择题,有关内容包括:被访问者年龄、性别、学历、月收入(以下简称收入)、所能接受的毛坯房总价(以下简称总价)、单价、建筑面积(以下简称面积)、户型、装修标准(以下简称装修)等19项内容。
2004年3月,我们采纳便利样本,在广州市海珠区赤岗一带对旁边在售住宅的参观者、商场购物中心的购物者、公交站点前的等车人以及过路行人进行问卷调查本次调查共发放问卷800份,回收问卷614份数,回收率77%;去除20岁以下、65岁以上缺乏购房实力的人群,并剔除异样调查问卷、缺漏项问卷,共取得有效问卷458份,问卷有效率为75%在有效应答者中,男女分别占60%和40%;年龄构成上, 25岁以下者占20. 6%, 25-34岁占56. 3%, 35-44岁占15. 3%, 45岁以上占7.8%;学历构成上,大专以下占32.8%,大专学历占36.2%,大专以上学历占31%;收入构成上, 1000-1999元占20%, 2000-2999元占28. 7%, 3000-3999元占21. 5%, 4000-4999元占14. 8%, 5000-5999元占8.1%,6000元以上占6.9% 对于上述调查问卷中的19项内容,从探讨时间、成本以及探讨目的的综合角度动身,我们从中遴选出年龄、学历、收入、总价、面积、户型、装修①7项问题作为主要分析变量,其它10项问题仅作为协助分析之用上述7个变量的类别划分见表1。
在7个主要变量中,我们以住宅总价作为市场细分变量,年龄、学历、收入作为消费者身份与背景特征,面积、户型、装修作为消费者所购住房特征,消费者身份与背景特征、所购住房特征均与住宅总价进行对应分析与最优尺度分析,从中探寻广州市海珠区赤岗一带消费者购房行为特征 四、计算与分析 (一)对应分析 对应分析的过程以被访者所能接受的总价与 收入关系分析为例,运行SPSS11. 0中对应分析程序,输出结果见图1 视察图1,我们不难发觉: (1)倾向于购买总价为50万元以上住房的人群,月收入一般为6000元以上;倾向于购买总价为30-39万元、40-49万元住房的人群,月收入一般是3000-3999元;倾向于购买总价为20万元以下住房的人群,月收入一般是1000-1999元;倾向于购买总价为20-29万元住房的人群,月收入一般是2000-2999元;月收入4000-4999元、5000-5999元的人群好像和各类房屋总价没有联系 (二)最优尺度分析 运行最优尺度分析软件,输出结果见图2 由图2我们可以得出以下线索:总价为50万元以上的住房与月收入在6000元以上、45岁以上的人群有联系;总价为40-49万元的住房与月收入3, 000-3, 999元的人群有亲密联系;高校以上学历和月收入4, 000-4, 999元联系亲密;年龄为25-34岁、35-44岁和总价30-39万元的住房有关系;文化程度为中学以下以及大专学历的、年龄小于25岁、住房总价低于20万元以及20-29万元、收入为2000-2999元有联系,收入为1000-1999元的人群和有关变量没有关系。