文档详情

各向异性磁阻传感器的应用从设想到实践

cn****1
实名认证
店铺
PPT
827KB
约46页
文档ID:567440443
各向异性磁阻传感器的应用从设想到实践_第1页
1/46

各向异性磁阻传感器的应用从设想到实践￿￿￿￿Still￿waters￿run￿deep.流静水深流静水深,人静心深人静心深￿￿￿￿Where￿there￿is￿life,￿there￿is￿hope有生命必有希望有生命必有希望 各向异性磁阻传感器(AMR)uu原理:原理: * *Anisotropic Magnetoresistive Effect——Anisotropic Magnetoresistive Effect——各向各向异性磁阻效应异性磁阻效应 *Unlike the Hall effect,AMR is fundamentally *Unlike the Hall effect,AMR is fundamentally a a quantum-mechanical effect.effect. *spin-orbit interactions between the *spin-orbit interactions between the electron trajectory (orbit) and the electron trajectory (orbit) and the magnetization (spin).magnetization (spin). 传感器原理uu各向异性磁阻传感器是将铁镍合金薄膜沉积在硅基底上构成的,沉积的时候薄膜以条带的形式排布,形成一个平面的线阵以增加磁阻的感知磁场的面积。

传感器原理uu当外部磁场加到这样的铁磁性薄膜上的时候,磁畴旋转,改变空间取向,这样使得薄膜条带构成的线阵的表观电阻发生改变具体的说,电桥的相对的两个臂上的电阻增大,而另外两只相对的臂上的电阻减小,就反应在电桥电压输出的改变上 各向异性磁阻传感器HMC1002实验中采用HoneyWell公司的HMC1002特性: *响应时间短(可以测高频交变磁场) *测量精度高 (达10^(-8)T) *有两个敏感轴,可确定平面内大小方向 芯片体积小,定位较准确 芯片管脚排布  电压与磁场关系曲线外加磁场和电桥电压输出的线性关系: 芯片内的惠斯通电桥 Offset管脚管脚 uu通过在通过在通过在通过在OffsetOffset管脚上加置合适的电压可以使得:管脚上加置合适的电压可以使得:管脚上加置合适的电压可以使得:管脚上加置合适的电压可以使得:l l                把把某某个个特特定定方方向向的的不不需需要要的的磁磁场场扣扣减减掉掉((“ “屏蔽屏蔽” ”););l l                修正由于工艺本身造成的电桥的不平衡;修正由于工艺本身造成的电桥的不平衡;l l                通通过过电电桥桥输输出出的的电电压压信信号号的的反反馈馈可可以以由由offsetoffset功功能能完完全全抵抵消消外外部部磁磁场场对对传传感感器器的的作作用用,,可可以以方方便便的的实实现现“ “回回零零” ”的的操操作作,,这这在在用用这这个个传传感感器搭建一些更复杂的测量系统的时候会非常有用;器搭建一些更复杂的测量系统的时候会非常有用;同时,同时,honeywell1022磁阻传感器还内置了两组功能性的铁磁性磁阻传感器还内置了两组功能性的铁磁性电阻,外部相应的有两组功能管脚,称作电阻,外部相应的有两组功能管脚,称作offset管脚和管脚和set/reset管管脚。

脚 set/reset功能管脚功能管脚 的作用l        使磁阻传感器始终工作在高灵敏度的状态;l        改变输出电压信号的极性; set/reset功能uu很多小磁场传感器的性能在较大的外加磁场下(4-20gauss)都会使得输出信号的质量严重下降为了消除这种效应,避免瞬时性的大磁场对传感器的不良冲击性影响,honeywell磁阻传感器芯片内置了set/reset功能 set/reset功能管脚的应用是该磁阻传感器最有特色的地方,有必要功能管脚的应用是该磁阻传感器最有特色的地方,有必要做一些更具体的介绍做一些更具体的介绍: : 它的作用具体如下:uu当磁阻传感器受到外加大磁场干扰后,构成它的铁磁性薄膜材料的磁畴就会呈现随机取向的状态,这会使得它的灵敏度受到影响 作用原理uu芯片内部实现set/reset功能的部件实际上是一组铁磁性电阻,当一个冲击性电流通过这个铁磁性电阻的时候,会产生沿着传感器灵敏方向的“内部”磁场,如果冲击电流足够大,这个大的“内部”磁场可以使得传感器的磁畴全部沿着敏感方向有序排布,这就使得它回复到一个最初始的状态,在这个状态下感知磁场可以有最灵敏和最准确的输出信号。

uu从物理上说,磁畴是具有记忆性的:当先后将两个磁场A,B加到一组磁畴上后,磁畴的排布效果与仅将B磁场加到它上面磁畴的排布效果不同,即磁畴的排布与它感知的磁场“历史”有关,而不仅仅取决于当前的磁场 uu所以可以想像,时时对传感器进行复位操作(set/reset)可以使得磁畴总是从一个最初始的状态去感知外部磁场,这在测量不断变化的磁场的时候可以使得测得数据很准确的反应变化的磁场 uu下面是进行了置位/复位操作后磁畴排布的示意图: 何时使用set/resetuu当然,如果所测磁场是静磁场,或者变化不大,复位功能(set/reset)也不是一定时时需要的,当发现传感器的灵敏度有下降的情况时进行一次复位操作可以在一般使用情况下达到满意的效果 典型的应用电路: 由传感器,仪器放大器,电源,set/reset功能脉冲电流发生电路,A/D转换接口电路构成(不包括后继的数据处理部分) 置位/复位电路具体实现难度uu窄脉冲uu重负载uu使用电容时还要考虑其电阻特性uu资料提供电路图有误 解决方案uu将产生脉冲电路与输出带负载部分电路分开考虑uu用门电路的延时效应,电容、电阻网络的微分性,制成窄脉冲发生器uu用集电极开路非门7406多个门并联驱动负载,以减小输出阻抗,增大带负载能力。

窄脉冲发生器和输出带负载部分 输出波形 关于磁阻传感器应用的讨论:1. 现有磁传感器的应用: 感应开关、速度计、角速度计、探矿等2. AMR的长处: 敏感度高,精确,响应时间短3. 可能的应用: 联想CT原理,磁CT? 工作原理由场求源--给定场在某个区域内的分布,求出源的分布可能性: 是否给定场的某一分布,所对应的源是唯一决定的?2可行性: 给定场的分布,有没有办法将源分布计算出来? 3可操作性: 在现有的条件下,有没有可能在可接受的时间内完成计算?结论:…… 公式与算法比奥-萨伐公式:比奥-萨伐公式: 直线上各点处的磁感应强度直线上各点处的磁感应强度大小和方向可以用对整个导大小和方向可以用对整个导线的积分作出线的积分作出 因此,导线形状决定了场强因此,导线形状决定了场强分布已知形状,可求分布已知形状,可求分布d dB=B= 由于在给定的简化条件下,源形状为过固定端点由于在给定的简化条件下,源形状为过固定端点的简单曲线(不考虑复值情况)也即源函数可的简单曲线(不考虑复值情况)也即源函数可用函数空间中一组标正基线性表出,故猜想可以用函数空间中一组标正基线性表出,故猜想可以用数值计算逼近的办法。

用数值计算逼近的办法 Legendre Polynomials Legendre Polynomials 先将乘上可变系数的legendre多项式作源,计算其在各点处的场强,算出后和实际场强作平方误差积分,找出误差积分最小的系数作为低阶近似然后在此基础上,进一步求高阶项的系数 一个简单想法就是: 当逼近源产生的场足够接近于实际的场时,逼近源的形状也就与实际源的形状足够接近 当然,这种说法只有在“微扰”前提下才较精确,否则未必成立 实际过程:实际过程:1. 1. 测量实际场强测量实际场强2. 2. 拟合场强分布,得到较光滑的场分布函数拟合场强分布,得到较光滑的场分布函数3. 3. 利用刚才所讲的方法,由场分布函数求得逼近利用刚才所讲的方法,由场分布函数求得逼近源函数,得到源的近似形状源函数,得到源的近似形状这就实现了我们最初的想法 --由场求源 实验部分实验部分的几个技术问题:1. 理论模型是非闭合电流段,实际上却是闭合的电流环,如何去除多余导线上电流的影响?2. 测量时数据点多少才合适?过多就白费时间,太少又不足以给出完整分布。

3. 如何保证测量点在一条直线上? 1. 1. 采用如下绕法:采用如下绕法:2. 2. 先粗略的看磁场变化趋势,保证不漏掉极值点先粗略的看磁场变化趋势,保证不漏掉极值点3. 3. 将芯片固定在边缘规则的物体(比如木板)上,沿边缘将芯片固定在边缘规则的物体(比如木板)上,沿边缘移动木板即可移动木板即可 实验内容实验一:实验一:三角形三角形目的:目的: 确认传感器测量精度能确认传感器测量精度能达到逼近要求的精度达到逼近要求的精度方法:方法: 比较实测场强值与理比较实测场强值与理论计算值的差别论计算值的差别 实验数据--理论数据 实验二:拟合的曲线给出的图形和实际图形的对比 实验三:实验三:更多图形的实验(由于时间限制和实验室数据采更多图形的实验(由于时间限制和实验室数据采集卡说明没有注明具体操作方法),实验数据尚集卡说明没有注明具体操作方法),实验数据尚未得出,这里给出形状和理论场强未得出,这里给出形状和理论场强 具体工作 * * 实际工作中采用实际工作中采用MFCMFC编程实现图形显示和数据存编程实现图形显示和数据存储 * * 由于我们采用的是数值计算,因此找到速度快,由于我们采用的是数值计算,因此找到速度快,精度高的算法是关键因素。

在实现实验数据拟合精度高的算法是关键因素在实现实验数据拟合时,为避免出现高阶的剧烈震荡,我们用了三次时,为避免出现高阶的剧烈震荡,我们用了三次样条的插值算法由于没有现成的样条的插值算法由于没有现成的C C代码可用代码可用(网上搜不到),只好找到一个用(网上搜不到),只好找到一个用PascalPascal写的程写的程序,逐字逐句地改了过来序,逐字逐句地改了过来; ;为了可以进行任意精度为了可以进行任意精度的计算,我们从的计算,我们从STLSTL库里继承了库里继承了VectorVector类重载了了[][]运算符,解决了数组大小的动态变化问题运算符,解决了数组大小的动态变化问题 * 同样,处理数值积分时用的Romberg法也没有现成的代码只好找到一个伪代码描述自己来写在处理输入问题时,用了北大未名BBS上一位同学为MSflexGrid做的功能扩展头文件,非常方便,在此表示感谢 感谢同刘进老师的多次有益的讨论,感谢电子系唐镇松教授和王楚教授在电路方面的指导,以及电子系高年级师兄在使用protel软件进行布线,制作印刷电路板方面的帮助! 。

下载提示
相似文档
正为您匹配相似的精品文档