引言混凝土中钢筋锈蚀已成为世界关注的大问题, 被认为是当今影响 混凝 土结构耐久性 的首要原因钢筋锈蚀已经或正在给国民经济带来巨大经济损失基于此,美 国总结正反两个方面的经验教训, 提出了 “立足前期措施, 着眼长远效益 ”,并强行实施基 建工程管理中的 “全寿命经济分析法 ”(LCCA)目前,我国正处于基本建设高潮时期,国内 外的经验教训应认真吸取,这已不是单纯技术问题一、 钢筋腐蚀危害与对混凝土的破坏作用1、钢筋锈蚀危害与经济损失世界一些国家的腐蚀损失,平均可占国民经济总产值的 2%~ 4%;其中,被认为与钢筋腐蚀有 关者可占 40%(至今我国尚无确切统计数据 )美国 1984 年报道,仅就桥梁而言,万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏, 4 0%承载力不足和必须修复与加固处理, 当年的修复费为 54 亿美元; 1998 年报道钢筋混凝土腐 蚀 破坏的修复费,一年要 2500 亿美元,其中桥梁修复费为 1550 亿美元 (是这些桥 初建费用的 4 倍 );还有报道说,到本世纪末,美国要花 4000 亿美元用于修复和重建钢筋腐蚀破坏的 工程 如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破 坏的发生和挽回部分经济损失。
加拿大早期大量使用 “防冰盐 ”,使钢筋混凝土桥梁等破坏 严重欧洲、英国、澳大利亚、海 湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题 (英国修复费为每年 50 亿英镑 )韩国曾发生 一系列建筑物破坏、倒塌事件,其中也与 “盐害 ”有关我国台湾重修澎湖大桥和不断发生 的“海砂屋 ”事件,也是氯盐腐蚀钢筋所造成的混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出 :“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用 ”他明确 将“钢筋锈蚀 ”排在影响混凝土耐久性因素的首位而来自海洋环境和使用 “防冰盐 ”中 的氯盐,又是造成钢筋锈蚀的主要原因 当然,混凝土中性化、 冻融等也促进钢筋腐蚀破坏 此外, “碱集料反应 ”也在钢筋混凝土破坏中占一定的比例 (本文暂不讨论 )我国海港码头不能耐久, 北方使用化冰盐, 桥梁道路遭破坏 以北京立交桥为例,仅使用 19 年的西直门立交桥 (已重修 ),钢筋锈蚀破坏十分明显与严重 我国存在着广泛的腐蚀环境, 北方地区使用化冰盐有增无减,而桥梁道路却未采取应有的防护措施 (甚至 “规范 ”中无防 盐腐蚀要求 );我国海岸线很长,而大规模的基本建设大都集中于沿海地区,以往的海港码 头等工程,多数达不到设计寿命要求;特别是沿海一带河砂已呈短缺现象,滥用海砂则其害 无 穷;我国还有广泛的盐碱地 (石油基地 ),其腐蚀条件更为苛刻;特别应该指出的是,我国工 业 环境中的建筑物, 其钢筋锈蚀破坏十分普遍与严重, 有调查报告表明, 大多数工业建筑达 不 到设计寿命的年限,目前正在进入大规模修复的时期。
因此,我国钢筋锈蚀破坏的形势是严 峻的立足前期措施、 着眼长远效益 ”,这是美国经过正反两个方面的经验教训所得出的可贵结 论美国正在强行实施基建工程管理中的 “全寿命经济分析法 ”(LCCA),其基本思想是,在 设计施工阶段,不论是事先采取防护措施还是以后 “坏了再修 ”,都要做出经济预算和比较 ,承建者要对工程的 “全寿命 ”负责到底,这样可避免 “短期行为 ”给后人带来的麻烦与巨 大经济损失 “全寿命经济分析法 ” 中曾有以下例举:工程处在氯盐腐蚀环境中,钢 筋混凝土结构物设计寿命为 40 年,前期实施措施 (采用钢筋阻锈剂 ),附加费用为美 元/m2( 混凝土面板 );若前期无措施,则 15~20 年开始修复, 40 年内累积费用为美元 / m2(5 倍于前者 )可见,推行 “全寿命经济分析法 ”和倡导工程前期 (设计、施工阶段 )采 取 防钢筋腐蚀的措施,已经不是单纯的技术问题,其重大意义和长远经济效益是不可低估的2、钢筋腐蚀破坏的主要表征混凝土中的钢筋一旦具备了腐蚀条件, 锈蚀便会发生和发展 钢筋锈蚀是一个电化学过程, 由铁变成氧化铁,其体积发生膨胀,根据最终产物的不同,可膨胀 2~7 倍。
钢筋锈蚀破坏的主要破坏特征可归纳为:(1)混凝土顺钢筋开裂混凝土具有较好的抗压性能, 但其抗折、抗裂性差, 尤其钢筋表面混凝土缺乏足够的厚度时 ,钢筋锈蚀产物体积发生膨胀,足以使钢筋表面发生混凝土顺钢筋开裂大量试验研究和工 程实践表明,钢筋表面锈层厚度很薄时 (如 20~40μ m),便可导致混凝土顺钢筋开裂换言 之,钢筋锈蚀导致混凝土开裂是容易发生的设计、施工、使用、管理及维护人员,认识到 这一点十分重要欲使混凝土不发生顺钢筋开裂,提高结构物的耐久性,其着眼点就是要最 大限度地阻止钢筋生锈,而不应立足于锈蚀发生后再采取补救措施混凝土一旦发生顺钢筋开裂, 腐蚀介质更容易到达钢筋表面, 钢筋锈蚀的速度将会大大加快 研究和工程实践表明,这时钢筋锈蚀的速度,有可能快于裸露于大气中的钢筋这是由于 裂缝处更易促成电化学腐蚀的发生和发展由此引出两个重要观念:一是要阻止钢筋生锈, 二是钢筋锈蚀一旦发生或初见混凝土顺钢筋开裂时,就立即采取防护措施这是被提高了的 新认识,对于防钢筋锈蚀破坏、提高结构物的耐久性具有重要指导意义,更具有巨大经济价 值2) “握裹力 ”下降与丧失初见混凝土发生顺钢筋开裂时, 结构物物理力学性能、 承载能力等, 可能还没有发生明显变 化(这是人们不重视初始顺钢筋开裂的重要原因之一 )。
然而,随着裂缝的不断加宽, 混凝土与钢筋之间的粘结力 (握裹力 )也随之下降 (下降速度取决于钢筋锈蚀速度 ),滑移增大 ,构件变形 当“握裹力 ”丧失到一定限度时,局部或整体失效便会发生这时的钢筋锈蚀程度也并不一 定十分严重那些对 “握裹力 ”敏感的构件,更具重要性3)钢筋断面损失混凝土中钢筋锈蚀,一般分为局部腐蚀 (如坑蚀 )和全面腐蚀 (均匀腐蚀 ),常常是局部腐蚀为 主而造成钢筋断面损失,其损失率达到极限时,构件便会发生破坏应该说明的是,从钢筋 锈蚀、混凝土顺钢筋开裂到构件破坏,是一个复杂的演变过程,不仅取决于钢筋锈蚀的发展 速度,也取决于构件的承载能力及钢筋的受力状态等故有时钢筋锈蚀并不十分严重,构件 就破坏了,而有时钢筋出现明显的断面损失,构件却还在支撑着 (有些人认为 “钢筋锈蚀无 大妨害 ”就是依此为证 )对于钢筋断面损失与构件承载能力之间的关系, 尚待进一步研究 4)钢筋应力腐蚀断裂处在应力状态下的钢筋 (包括预应力 ),在遭受腐蚀时有可能发生突然断裂世界上曾发生过 此类事故,如钢筋混凝土桥梁突然倒塌,建筑物突然断裂等柏林议会大厦屋顶突然塌 落,即与钢筋应力腐蚀断裂有关。
应力腐蚀断裂可在钢筋未见明显锈蚀的情况下发生,断裂时钢筋属于脆断这 是“腐蚀 ”与“应力 ”相互促进的结果: 应力可使钢筋表面产生微裂纹、 腐蚀沿裂纹深入、 应力再促裂纹开展如此周而复始,直到突然断裂这是一种危险的形式,应引起重视此 外,应力腐蚀断裂与环境介质有关3、混凝土质量与钢筋锈蚀应该指出,钢筋混凝土过早破坏 (或称耐久性不足 )多半是综合因素造成的,在任何情况下工 程质量都是首要的而工程质量又取决于正确设计、良好施工、精心管理与维护等在腐蚀 环境中,不采取防护措施或措施不当,更是导致钢筋腐蚀破坏过早出现的原因而混凝土工 程质量不佳,则防护措施也难以奏效钢筋首先是受混凝土保护的,因此,混凝土质量对防 止钢筋腐蚀是至关重要的设计与规范我国相关设计规范,多以混凝土 “抗压强度 ”为主要甚至唯一标准,而混凝土对钢筋的保护 能力,主要取决于 “密实性 ”和钢筋表面混凝土层的厚度 实践中 “抗压强度 ”与“密实性 ”并不是同步关系,在一定条件下,甚至 “超强设计 ”也未必能实现对钢筋的良好保护 新 近修订的相关设计规范中, 已引入 “耐久性设计 ”的观念 (与国际接轨 ),这是提高混凝土对 钢筋保护能力的重要方面。
设计者除了强化“耐久性设计 ”的观念外,还要根据结构所处的 腐蚀环境的严酷程度, 采取相应的防钢筋锈蚀的技术措施,才可实现结构耐久的目的以往 ,人们对于钢筋锈蚀危害及混凝土耐久性认识不足、 相关规范的欠完善和 “修标 ”滞后,在 一定条件下没有采取相应的防钢筋锈蚀的技术措施等,是造成已有结构物过早出现钢筋锈蚀 的原因之一施工质量钢筋混凝土工程施工质量的重要性是不言而喻的, 已有工程的实践表明, 钢筋过早的出现腐 蚀破坏,大多与混凝土质量欠佳有关工程施工质量与众多人为因素密不可分 (这里暂不讨 论)也有一些技术问题没有得到很好的解决 如微裂纹与宏观缺陷,似在施工过程中是很难 完全避免,这就对钢筋保护不利;又如,目前特别强调建设速度,设法使混凝土 “早强 ”, 其结果使 “密实性 ”得不到保证,长期强度与耐久性受到不良影响总之,施工质量对于保 护钢筋、保证结构物的耐久性,在任何情况下都起着关键作用原材料 水泥水泥水化的高碱度, 使钢筋表面形成钝化膜, 这是混凝土之所以能保护钢筋的主要依据与基 本条件任何削弱或丧失这个条件的因素,都将促进钢筋锈蚀、影响混凝土的耐久性混凝 土的高碱度,主要来源于水泥水化产物中的氢氧化钙和少量氢氧化钠、氢氧化钾 (pH> )。
钾、钠离子含量高时,能刺激 “碱集料反应 ”,因此,限制其含量十分必要然而,认 为“水泥碱度越低越好 ”的看法,也是十分有害的在为避免 “碱集料反应 ”而寻求 “低碱 度水泥 ”的同时,切莫忘记,长期保持混凝土的高碱度 (至少 pH>,是钢筋得到保护 的起码条件, 也是保证混凝土耐久性的关键问题之一碱度过低的水泥,对于钢筋混凝土应 限制使用,或使用时同时采取防腐蚀技术措施 (如用耐腐蚀钢筋、涂层钢筋、掺钢筋阻锈剂 等)海砂由于海砂含有不等量的氯离子, 能够刺激钢筋锈蚀, 我国相关规范不推荐或严格限制使 用海砂这是完全必要的,国内外滥用海砂造成的危害不乏实例从另一个角度讲,海砂也 是可利用资源,日本即是成功开发利用海砂的国家之一,主要是同时采取防氯离子腐蚀的技 术措施 (如掺加钢筋阻锈剂等 )在我国,如日本那样严格而合理地开发利用海砂资源已提到 日程上来 (据悉宁波地区已经发布文件,采取加钢筋阻锈剂等措施后开放使用海砂 )总之, 严格界定海砂的使用,是我国建设中面临的新问题,意义重大掺合料、外加剂各种掺合料 (粉煤灰、矿渣等,用于改善水泥性能,降低成本 ),正在大力发展中凡是能提 高混凝土密实性、增强对钢筋保护能力者,均有利于结构物的耐久性;然而,一些掺合料能 降低混凝土的碱度和碱储量,这是不利于对钢筋的保护的,甚至可引起钢筋腐蚀 (与掺合料的性质、掺加量等有关 )。
这一点应该引起重视,在掺合料的研究和应用中,考虑 其。