文档详情

特殊的平行四边形知识点总结

ni****g
实名认证
店铺
DOC
75KB
约3页
文档ID:473257113
特殊的平行四边形知识点总结_第1页
1/3

知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形2)性质:矩形的四个角都是直角;矩形的对角线平分且相等3)判定定理:①有一个角是直角的平行四边形叫做矩形 ②对角线相等的平行四边形是矩形  ③有三个角是直角的四边形是矩形直角三角形的性质:直角三角形中所对的直角边等于斜边的一半2.菱形:(1)定义 :邻边相等的平行四边形2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角 (3)判定定理:①一组邻边相等的平行四边形是菱形②对角线互相垂直的平行四边形是菱形③四条边相等的四边形是菱形4)面积:      3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分 正方形既是矩形,又是菱形3)正方形判定定理:①对角线互相垂直平分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线互相垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。

矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定三、判定一个四边形是特殊四边形的步骤: 常见考法(1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;(3)一些折叠问题;(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系所以,以此为背景可以设置许多考题 误区提醒(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);(3)再利用对角线长度求菱形的面积时,忘记乘;(3)判定一个四边形是特殊的平行四边形的条件不充分。

典型例题】(2010天门、潜江、仙桃)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.  (1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;  (2)当点P段DB上 (不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;  (3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.  【解析】(1)AP=EF,AP⊥EF,理由如下: 连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE,∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB-BM=AM,BC-BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE,∴AP=EF,∠APM=∠FPN=∠PEF∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同。

下载提示
相似文档
正为您匹配相似的精品文档