文档详情

岩石物理参数计算及应力研究

re****.1
实名认证
店铺
DOCX
14.17KB
约4页
文档ID:398022059
岩石物理参数计算及应力研究_第1页
1/4

岩石物理参数计算及应力研究; 第三章 岩石物理参数计算及应力研究第一节 岩石物理参数计算地层岩石是地应力的载体,岩石物理性质对地应力的传递、衰减、集中、分散都会产生很大的影响,岩石物理参数与岩体赋存的地应力密切相关,岩石物理参数计算是地应力研究的必然步骤通过纵、横波时差和密度等测井资料,可以计算地层条件下的岩石动态弹性模量,在此根底上,可以进行地应力分析、井眼稳定性分析、地层出砂分析、以及人工压裂设计等方面的研究岩石物理参数包括岩石弹性参数和岩石机械强度参数岩石弹性参数主要有泊松比《、杨氏模量E、剪切模量G、体积模量K、体压缩系数Cb和Cma、有《效应力系数系数《〔比奥特系数〕;岩石机械强度主要有单轴抗压强度c、岩石s的抗剪强度C0和岩石抗张强度t,以及内摩擦角《等1、岩石弹性参数对于各向同性均匀介质岩石来说,利用牛顿第二定律和三维虎克定律,经数学推导,可导出计算声波速度在岩石介质中的波动方程:Vp《《《2G《《G《E(1《《)1 《《(1《《)(1《2《)《t《(3-1-1)Vs《《E1 《《2(1《《)《ts(3-1-2)根据上述的波动方程,可以得出各种弹性参数与声波时差的关系式。

①泊松比定义为横向应变与纵向应变之比《《0.5《ts2《《t2p《ts2《《t2p(3-1-3)②切变模量定义为施加的应力与切应变之比G《《b《t2s《a(3-1-4)③杨氏模量定义为施加的轴向应力与法向应变之比E《2G(1《《)④体积模量定义为静水压力与体积应变之比《14《《《《a Kb《《b《《《t23《t2《s《《p(3-1-5)(3-1-6)⑤体积压缩系数定义为体积模量的倒数即:Cb《1 Kb(3-1-7)⑥有效应力系数(Boit)表示孔隙压力对岩石变形的影响,即:《《1《Cma=Kb/Kma Cb(3-1-8)式中:《b为岩石体积密度,gcm3;《ts、《tp为纵、横波时差,《sft公式中的a为单位转换系数具体选择办法如下:如果密度单位为g/cm3,时差单位为《s/ft,弹性参数单位为psi,那么a《1.34《1010;如果密度单位为g/cm3,时差单位为《s/ft,弹性参数单位为MPa,那么a《9.29《107;如果密度单位为g/cm3,时差单位为《s/m,弹性参数单位为MPa,那么a《109因此,利用阵列声波测井提供的纵、横波时差以及常规测井提供的密度资料就可以进行岩石弹性参数计算。

但是由于费用等原因,并不是每口井都发展声波全波列或阵列声波测井,因而不能直接获取横波时差资料,在研究中那么可以通过构造内某些井已有的横波时差曲线资料来建立横波时差曲线计算式研究说明,横波时差与纵波时差、地层密度和纵波波阻抗之间有很好的相关性通过对安棚地区4口井的纵横波时差曲线进行分析后,建立了纵横波时差经验关系式:《ts《1.79《tp《5.58《b《13.34R《0.904(3-1-9)图3-1是由上式纵横波时差关系式得出的横波时差与实测横波时差的关系图,从图中可以看出,大局部点分布在斜率约为450的直线上,计算的横波时差与实测横波时差近似相等 图3-1-1合成横波时差与实测横波时差关系图当研究区内没有一口井具有横波时差资料时,那么可用下面的公式来合成横波时差曲线:《ts《《tmas《《《tfs《《tmas《《《t《《tpfp《《tmap《《《tmas《(3-1-10)式中:《tmas、《tmap为岩石骨架的横波时差和纵波时差,《sft;《tfs、《tfp为流体的横波时差和纵波时差,《sft2、岩石动、静态弹性参数之间的转换办法岩石弹性参数的常用测定办法有动态法和静态法两种静态法是通过对岩样进行静态加载测其变形得到,所得弹性参数称之为静态参数;动态法那么是通过测定超声波在岩样中的传播速度转换得到,所得弹性参数称之为动态参数。

因此,用测井资料计算得到的弹性参数是动态参数根据地下岩层的应力形成、赋存和起作用的机理,特别是在应力幅值、加载速度和所引起的岩石变形等方面,更接近岩石静态测试的条件,另外,现有的力学本构关系一般是基于静态参数建立的,因此,在地应力计算和实际项目中应采用岩石的静态弹性参数大量研究资料说明岩石的动态、静态弹性参数具有很好的相关性,且大局部情况下岩样的静态参数弹性模量小于其动态值岩石动、静态弹性参数间存在较大差异,其原因主要是岩石中微裂缝和孔隙的存在岩石这种孔隙的弹性材料有别于各向同性、均质的线弹性体微裂缝的存在对岩石静态变形的影响较大,而超声波可以绕过一些微裂缝传播在实际应用时,可通过岩石力学动、静态同步测试建立动、静态参数间的关系,从而把测井得到的动态参数转换为静态参数由于研究区及其邻近区块没有条件做岩石力学试验,本次研究引用了辽河油田和大庆油田的实验结果:Es《0.2526《0.7095Ed0.37 《s《0.36《《d(3-1-11) (3-1-12)式中:Es、《s为静态杨氏模量和静态泊松比;Ed、《d为动态杨氏模量和动态泊松比,即测井资料计算结果式(3-11)和式(3-12)的相关系数分别为0.75和0.86。

3、岩石机械强度参数目前,岩石机械强度参数还没有理论计算式,一般通过岩石力学测试来确定为了克服岩石力学试验存在的测试费用昂贵和数据量少等缺点,研究人员通过岩石力学试验建立了岩石强度参数的经验计算式:⑴单轴抗压强度《CDeer和Miller〔1996〕根据大量的室内试验结果建立了砂泥岩的单轴抗压强度与岩石动态杨氏模量Ed和地层泥质含量Vsh之间的关系:①砂泥岩地层《c《0.0045Ed《1《Vsh《《0.008Ed《Vsh②碳酸盐岩地层(3-1-13)《c《0.0026Ed《1《Vsh《《0.008Ed《Vsh(3-1-14)式中:《c和Ed的单位为MPa;泥质含量为小数,由自然伽马测井资料确定⑵岩石粘聚力C0〔内聚强度或抗剪切强度〕根据Brules和Coates的研究结果,粘聚力C0的计算公式为:《1《《d2《《《C0《5.44《10《15v4《1《2《《pbd《1《《d《《《《《《1《0.78Vsh《 《(3-1-15)式中:《d为岩石动态泊松比,无量纲;《b为岩石的体积密度,单位为gcm3;vp为岩石的纵波速度,ms;Vsh为地层的泥质含量,小数①岩石的抗张强度stst《C0 4(3-1-16)②岩石的内摩擦角《对于岩石内摩擦角《确实定,斯伦贝谢和西方阿特拉斯公司在计算时假定岩石的所有内摩擦角《都为300,这与实际情况有一定的误差,岩石类型和组成岩石的颗粒的相对大小对内摩擦角有影响。

一般岩石的摩擦角在150~450之间根据Brie强度公式,摩擦角与泊松比之间关系有:《《30(1《《1《《)《15(3-1-17)另外,内摩擦角也可以按石油大学提出的经验关系式进行计算:《《20《2.654《logM《1《M2其中:M《58.93《1.785C0具体采用哪个公式,视实际情况而定《《(3-1-18)4、岩石物理参数计算实例分析根据上述参数计算公式,利用的相应测井资料对安塞油田的几口井进行岩石机械特性进行分析从安2051和泌356井的岩石物理参数成果图〔图3-1-2、图3-1-3〕可以看出,这两口井地层岩石的各种弹性模量参数(动态)比拟大,杨氏模量在40000MPa-65000MPa之间,即岩石的抗破坏能力比拟强从图中还可以看出,泥岩层的抗剪切强度和单轴抗拉强度比砂岩层的大,这是在储层改造时为什么泥岩层能作为遮挡层的原因之一当然,井壁岩石的破坏不仅与岩石本身的强度有关,还与地应力有关一般情况下,假设不考虑地应力的影响,泥岩抗破坏的能力比砂岩强 。

下载提示
相似文档
正为您匹配相似的精品文档