2014年贵州省铜仁市中考数学试题及答案 一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)的相反数是( ) A.B.C.﹣D.﹣分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:的相反数是﹣,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.(4分)下列计算正确的是( ) A.4a2+a2=5a4B.3a﹣a=2aC.a6a2=a3D.(﹣a3)2=﹣a6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方..分析:根据合并同类项,可判断A、B,根据同底数的除法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相减,故C错误;D、负1的平方是1,故D错误;故选:B.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减. 3.(4分)有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是( ) A.B.C.D.考点:概率公式..分析:由有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,直接利用概率公式求解即可求得答案.解答:解:∵有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,∴随意抽取一张,抽得红心的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)下列图形中,∠1与∠2是对顶角的是( ) A.B.C.D.考点:对顶角、邻补角..分析:根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,进而得出答案.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.点评:本题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等. 5.(4分)代数式有意义,则x的取值范围是( ) A.x≥﹣1且x≠1B.x≠1C.x≥1且x≠﹣1D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件..分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得 x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 6.(4分)正比例函数y=2x的大致图象是( ) A.B.C.D.考点:正比例函数的图象..分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解答:解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=2x的大致图象是B.故选:B.点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线. 7.(4分)如图所示,点A,B,C在圆O上,∠A=64,则∠BOC的度数是( ) A.26B.116C.128D.154考点:圆周角定理..分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64,∴∠BOC=2∠A=264=128.故选C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键. 8.(4分)如图所示,所给的三视图表示的几何体是( ) A.三棱锥B.圆锥C.正三棱柱D.直三棱柱考点:由三视图判断几何体..分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为直三棱柱.解答:解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为直三棱柱.故选:D.点评:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状. 9.(4分)将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A.y=(x﹣2)2﹣1B.y=(x﹣2)2+1C.y=(x+2)2+1D.y=(x+2)2﹣1考点:二次函数图象与几何变换..分析:根据二次函数图象左加右减,上加下减的平移规律进行求解.解答:解:抛物线y=x2向右平移2个单位,得:y=(x﹣2)2;再向下平移1个单位,得:y=(x﹣2)2﹣1.故选:A.点评:主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式. 10.(4分)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是( ) A.B.C.1D.考点:相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质..分析:设MD=a,MF=x,利用△ADM∽△DFM,得到∴,利用△DMF∽△DCE,∴.得到a与x的关系式,化简可得x的值,得到D选项答案.解答:解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90,∴AB=AM,BE=EM=3,又∵AE=2,∴,设MD=a,MF=x,在△ADM和△DFM中,,∴△ADM∽△DFM,,∴DM2=AM•MF,∴,在△DMF和△DCE中,,∴.∴,∴,解之得:,故答案选:D.点评:本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度. 二、填空题(本题共共8小题,每小题4分,共32分)11.(4分)cos60= .考点:特殊角的三角函数值..分析:根据特殊角的三角函数值计算.解答:解:cos60=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值. 12.(4分)定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣12=2,则(﹣1⊗2)⊗3= ﹣9 .考点:有理数的混合运算..专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后计算再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)2=6,6⊗3=32﹣63=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 13.(4分)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,是中心对称图形但不是轴对称图形的是 平行四边形 .考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意.故答案为:平行四边形.点评:本题考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 14.(4分)分式方程:=1的解是 x= .考点:解分式方程..专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3﹣x,移项合并得:3x=2,解得:x=,经检验x=是分式方程的解.故答案为:x=点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 15.(4分)关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是 k< .考点:根的判别式..分析:根据判别式的意义得到△=(﹣3)2﹣4k>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4k>0,解得k<.故答案为:k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 16.(4分)在某市五•四青年歌手大赛中,某选手得到评委打出的分数分别是:9.7,9.6,9.3,9.4,9.6,9.8,9.5,则这组数据的中位数是 9.6 .考点:中位数..分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:9.3,9.4,9.5,9.6,9.6,9.7,9.8,最中间的数是9.6,则中位数是9.6,故答案为:9.6.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数). 17.(4分)已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积是 1000π cm2.(结果保留π)考点:圆锥的计算..分析:根据圆锥表面积=侧面积+底面积=底面周长母线长+底面积计算.解答:解:圆锥的表面积=10π90+100π=1000πcm2.故答案为:1000π.点评:本题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式. 18.(4分)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n的数为 (﹣1)n﹣1 .考点:规律型:数字的变化类..分析:首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n个数字为0+1+2+3+…+(n﹣1)=,由此得出答案即可.解答:解:第n个数字为0+1+2+3+…+(n﹣1)=,符号为(﹣1)n﹣1,所以第n个数为(﹣1)n﹣1.故答案为:(﹣1)n﹣1.点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键. 三、解答题(本题共4小题,每小题10分,共40。