文档详情

北京师大版小学数学五年级上册第四单元第3课时《探索活动:行四边形的面积》备课解决方案

金诺****简谱
实名认证
店铺
DOC
47.50KB
约6页
文档ID:274013865
北京师大版小学数学五年级上册第四单元第3课时《探索活动:行四边形的面积》备课解决方案_第1页
1/6

3探索活动:平行四边形的面积备课解决方案备教材内容1.本课学习的是教材53~55页的内容2.教材创设“铺草坪”的情境,设计了四个递进的问题,引导学生探究平行四边形面积的计算公式3.平行四边形面积的计算,是在学生能灵活运用长方形面积计算公式,掌握平行四边形特征的基础上进行教学的理解推导平行四边形面积的计算公式的方法,将为学生探索三角形、梯形等面积计算公式打下基础备已学知识1.面积的含义:物体表面或平面图形的大小叫作面积2.长方形的面积公式:长方形的面积=长×宽备教学目标知识与技能1.掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积2.能运用平行四边形面积计算公式解决相关的实际问题过程与方法1.经历平行四边形面积计算公式的猜想与验证,体验数方格及割补法在探究中的应用,获得成功探索问题的体验2.在推导平行四边形面积公式的过程中,培养分析、综合、抽象和概括的能力情感、态度与价值观感受数学与生活的联系,体会数学知识的应用价值和探索知识的乐趣备重点难点重点:掌握平行四边形面积的计算公式,并能正确运用难点:经历平行四边形面积计算公式的猜想与验证,体验数方格及割补法在探究中的应用备知识讲解知识点一 平行四边形面积计算公式的推导问题导入 如图,公园准备在一块平行四边形的空地上铺上草坪。

如何求这块空地的面积?(教材53页例题)过程讲解 1.读题,理解题意空地的形状是平行四边形,求空地的面积,就是求平行四边形的面积2.借助方格纸估测平行四边形的面积平行四边形的面积计算公式没有学过,可以借助方格纸估测空地的面积如下图所示:  从方格纸中可以看到,长方形的面积占30个小方格,平行四边形的面积不到30个小方格数一数得出:平行四边形占12个小方格和12个不满一格的小方格,不满一格的按半格计算,则平行四边形共占18个小方格3.明确推导平行四边形面积计算公式的必要性并不是所有的平行四边形都能借助方格纸估测出面积,估测值并不是准确值,因此平行四边形也应像长方形、正方形一样,借助公式计算面积4.推导平行四边形的面积计算公式思想方法 提示通过割补把平行四边形拼成长方形体现了转化思想1)实际操作,拼剪转化把一个平行四边形沿着它的一条高剪开,拼成一个长方形(如下图)重点 提示计算平行四边形的面积要用一组对应的底和高相乘2)比较拼成的长方形和原平行四边形的关系通过观察发现:拼成的长方形的面积与原平行四边形的面积相等,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高3)公式推导长方形的面积  =  长  ×  宽  ↓ ↓ ↓平行四边形的面积 = 底 × 高(4)字母公式。

如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么平行四边形的面积公式可以写成S=ah5.解决问题6×3=18(m2)答:这块空地的面积是18 m2归纳总结平行四边形的面积=底×高用字母公式表示为S=a×h或S=ah 知识点二 平行四边形面积计算公式的应用问题导入 一个平行四边形广告牌的面积是12.8 m2,高是0.8 m这条高对应的底边长是多少米?(教材54页例题)过程讲解 1.理解题意广告牌的形状是平行四边形,已知平行四边形的面积和高,求这条高对应的底边的长度2.整理数学信息已知条件:一个平行四边形广告牌的面积是12.8 m2,高是0.8 m所求问题:这条高对应的底边长是多少米?3.探究解题方法方法一 根据平行四边形的面积计算公式计算1)方法分析由平行四边形的面积=底×高可以推出底=平行四边形的面积÷高2)解决问题12.8÷0.8=16(m)方法二 列方程解答1)方法分析设这条高对应的底边长是x m,根据平行四边形的面积计算公式列方程2)解决问题解:设这条高对应的底边长是x m0.8x,=12.8x,=12.8÷0.8x,=16答:这条高对应的底边长是16 m归纳总结已知平行四边形的面积和高,求平行四边形的底,可以应用“底=平行四边形的面积÷高”解答,也可以列方程解答。

知识点三 等底等高的平行四边形面积间的关系问题导入 分别计算图中每个平行四边形的面积,你发现了什么?(教材54页例题)过程讲解 1.读题,理解题意图中三个平行四边形的底和高分别相等,求出三个平行四边形的面积,并找出其中的规律2.探究解题方法利用平行四边形的面积计算公式直接求出每个图形的面积3.计算三个平行四边形的面积图①的面积:2×5=10(cm2) 图②的面积:2×5=10(cm2) 图③的面积:2×5=10(cm2)4.对比三个平行四边形的面积,发现规律图①的面积=图②的面积=图③的面积发现:等底等高的平行四边形的面积相等归纳总结平行四边形的底和高相等,它们的面积也相等 备易错易混误区一 判断:一个平行四边形的形状发生变化时,周长和面积都不发生变化√)错解分析 一个平行四边形,不论它的形状如何变化,它四条边的长度都不会发生变化,所以它的周长也不会发生变化当它的形状发生变化时,高也随着发生了变化,所以它的面积就发生了变化,如右图错解改正 ×温馨提示一个平行四边形,如果形状发生了变化,越接近长方形面积就越大;反之,面积就越小 误区二 求下面平行四边形的面积      6×5=30(cm2)错解分析 此题错在计算所用的底和高不是对应的,应该用底边6 cm乘对应的高3 cm或用底边3.6 cm乘对应的高5 cm。

不能用底边6 cm乘高5 cm,它们不是对应的底和高错解改正 6×3=18(cm2)或3.6×5=18(cm2)温馨提示计算平行四边形的面积时,要用对应的底和高相乘 备综合能力能力点一 运用抓不变量法解决求平行四边形的边长问题例1 如右图,这个平行四边形的面积是多少?平行四边形的另外一条边的长是多少?分析 长10 cm的底边与长6 cm的高是一组对应的底和高,可根据公式直接求出平行四边形的面积用面积除以另一条高的长度,就可以求出这条高所对应的底边的长度解答 10×6=60(cm2) 60÷8=7.5(cm)总结已知平行四边形的底、高和面积三个量之中的任意两个量,都可以求出第三个量,即S=ah,h=S÷a,a=S÷h 能力点二 运用分割法和假设法解决求复杂图形面积的问题例2 右图中大平行四边形的面积是48 cm2E、F是上、下两边的中点,你能求出图中小平行四边形(阴影部分)的面积吗?方法一 分割法分析 如下图,因为E、F分别为AB和CD边上的中点,连结EF后,平行四边形就被分成4个面积完全相等的三角形,则大平行四边形的面积÷4=一个小三角形的面积,一个小三角形的面积×2=阴影部分的面积解答 48÷4×2=24(cm2)方法二 假设法。

分析 假设小平行四边形的底边FC的长为a,则大平行四边形的底边DC的长为2a两个平行四边形的高相等,都是h,大平行四边形的面积是2ah=48,那么小平行四边形的面积ah=48÷2=24,即小平行四边形(阴影部分)的面积是24 cm2解答 48÷2=24(cm2)提示一个较复杂的图形,通过恰当的分割,可以转化成简单的图形高相等的两个平行四边形,底是几倍关系,面积就是几倍关系 备教学资料欧几里得平行四边形的面积计算公式是欧几里得根据度量规定推导而来的欧几里得是古希腊数学家,被称为“几何之父”他最著名的著作《几何原本》是欧洲数学的基础,总结了平面几何五大公设,被广泛认为是历史上最成功的教科书旧时的土地面积单位长期以来中国土地面积计量单位沿用市制,即“市顷、市亩、市尺”等,与国际上通用的土地面积单位不一致部分单位之间的换算关系如下:1公亩=0.15市亩=100平方米1市顷=100市亩=6.6667公顷1市亩=10市分=60平方市丈=0.0667公顷1平方市里=22500平方市丈=0.25平方千米1平方市丈=100平方市尺1平方市尺=0.1111平方米。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档