单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,6.1 光电图像传感器简介,6.2 CCD的工作原理,6.3 电荷耦合器件的分类,6.4 CCD的性能参数,第6章,固体成像器件(CCD),6.1 图像传感器简介,6.1.1 图像传感器发展,完成图像信息光电变换的功能器件称为,光电图像传感器,光电图像传感器的发展历史悠久,种类很多早在1934年就成功地研制出,光电摄像管,(Iconoscope),用于室内外的广播电视摄像但是,它的灵敏度很低,信噪比很低,需要高于10 000lx的照度才能获得较为清晰的图像使它的应用受到限制1947年制出的超正析像管(Imaige Orthico),的灵敏度有所提高,但是最低照度仍要求在2 000lx以上1954年投放市场的高灵敏视像管(Vidicon)基本具有了成本低,体积小,结构简单的特点,使广播电视事业和工业电视事业有了更大的发展1965年推出的氧化铅视像管(Plumbicon)成功地取代了超正析像管,发展了彩色电视摄像机,使彩色广播电视摄像机的发展产生一次飞跃然而,氧化铅视像管抗强光的能力低,余辉效应影响了它的采样速率。
1976,年,又相继研制出灵敏度更高,成本更低的硒靶管和硅靶管不断满足人们对图像传感器日益增长的需要1970年,美国贝尔实验室发现的电荷耦合器件(,Charge Coupled Device,简称CCD),的原理,使图像传感器的发展进入了一个全新的阶段,使图像传感器,从真空电子束扫描方式发展成为,固体自扫描输出方式,CCD,本身就能完成光学图像转换、信息存贮和按顺序输出(称自扫描)视频信号的全过程它的自扫描输出方式消除了电子束扫描造成的图像光电转换的非线性失真即,CCD,图像传感器的输出信号能够不失真地将光学图像转换成视频电视图像此外,与真空摄像器件相比,CCD还有以下优点:,(1)体积小,重量轻,功耗低;耐冲击,可靠性高,寿命长;,(2)无象元烧伤、扭曲,不受电磁场干扰;,(3)象元尺寸精度优于1m,分辨率高;,(4)基本上不保留残象(真空摄像管有15%20%的残象)5)视频信号与微机接口容易6.1.2,图像传感器的,基本原理,CCD,图像传感器目前已经成为图像传感器的主流产品其,应用研究成为当今高新技术的主流课题它的发展推动了广播电视、工业电视、医用电视、军用电视、微光与红外电视技术的发展,带动了机器视觉的发展,促进了公安刑侦、交通指挥、安全保卫等事业的发展。
在光照射下或自身发光的景物经成像物镜成像在图像传感器的光敏面上,形成二维空间光强分布的光学图像,光电图像传感器完成将光学图像转变成二维“电气”,图像的工作扫描型图像传感器输出的视频信号可经,A/D,转换为数字信号(或称其为数字图像信号),存入计算机系统,并在软件的支持下完成图像处理、存储、传输、显示及分析等功能本章主要讨论从光学图像到视频信号的转换原理,即图像传感器的基本工作原理,和典型应用问题,组成一幅图像的最小单元称为,像素或像元,,像元的大小或一幅图像所包含的像元数决定了图像的分辨率,分辨率越高,图像的细节信息越丰富,图像越清晰,图像质量越高即将图像分割得越细,图像质量越高CCD图像传感器用光敏单元分割被分割后的电气图像经扫描才能输出一维时序信号1,电荷耦合器件的结构,6.2,CCD,的工作原理,CCD的特点是以电荷作为信号,不是以电流或电压作为信号在P型或N型硅单晶的衬底上生长一层厚度约为微米的SiO,2,层,然后按一定次序沉积N个金属电极作为栅极,栅极间的间隙约2.5m,电极的中心距离1520m,于是每个电极与其下方的SiO,2,和半导体间构成了一个金属-氧化物-半导体结构,,即MOS结构,。
CCD线阵列,CCD,单元,这种结构再加上输入、输出结构就构成了,N,位CCDCCD,(,Charge Coupled Devices,,电荷耦合器件)图像传感器主要有,两种基本类型,,一种为信号电荷包存储在半导体与绝缘体之间的界面,并沿界面进行转移的器件,称为表面沟道,CCD,(简称为,SCCD,)器件;另一种为信号电荷包存储在距离半导体表面一定深度的体内,并在半导体体内沿一定方向转移的器件,称为体沟道或埋沟道器件(简称为,BCCD,)下面以,SCCD,为例讨论,CCD,的基本工作原理构成,CCD,的基本单元是,MOS,结构如图,8-15,(,a,)所示,,当金属电极加上正电压时,接近半导体表面的空穴被排斥,电子增多,在表面下一定范围内只留下受主离子,形成耗尽区(,图,8-15,(,b,)所示),该区域对电子来说是一个势能很低的区域,也称,势阱,加在栅极上的电压愈高,表面势越高,势阱越深;若外加电压一定,势阱深度随势阱中电荷量的增加而线性下降2.电荷耦合原理与电极结构,电荷包形成,:当有光照时,光生电子被收集到势阱中,形成电荷包一个MOS单元是一个光敏元,电荷耦合:,设,t=t,1,时,已有信号电荷存贮在偏压为+10V的号电极下的势阱里.,当,t=t2,时,电极和电极均加有+10V电压,所形成的势阱就连通,电极下的部分电荷就流入电极下的势阱中。
当,t=t3,时,电极上的电压由+10V变为+2V,下面的势阱由深变浅,势阱内电荷全部移入电极下的深势阱中由此,从,t1t3,,深势阱从电极下移动到下面,势阱内的电荷也向右转移了一位如果不断地改变电极上的电压,就能使信号电荷可控地一位一位地顺序传输CCD的电极结构:,CCD中电荷的存贮和传输是通过改变各电极上所加电压实现的按照加在电极上的脉冲电压相数来分,电极的结构可分为二相、三相、四相等结构形式三相电阻海结构,二相硅-铝交叠栅结构,四电极结构:,3.电荷的注入和检测,光注入,:,正面和背面光照式,Q,in,=,qN,eo,At,c,式中:,为材料的量子效率;,q,为电子电荷量;,N,eo,为入射光的光子流速率;,A,为光敏单元的受光面积;,t,c,为光的注入时间CCD工作过程分三部分:信号输入、电荷转移和信号输出部分输入部分,的作用是将信号电荷引入到CCD的第一个转移栅下的势阱中引入的方式有两种:,光注入,和,电注入,在滤波、延迟线和存储器应用情况,摄像应用,电注入,机构由一个输入二极管和一个或几个输入栅构成,它可以将信号电压转换为势阱中等效的电荷包输入栅施加适当的电压,在其下面半导体表面形成一个耗尽层。
如果这时在紧靠输入栅的第一个转移栅上施以更高的电压,则在它下面便形成一个更深的耗尽层这个耗尽层就相当于一个“通道”,受输入信号调制的电荷包就会从输入二极管经过“通道”流人第一个转移栅下的势阱中,完成输入过程输出电流,I,d,与注入到二极管中的电荷量,Q,S,的关系,Q,s,=,I,d,d,t,(8-10),输出部分,由输出二极管、输出栅和输出耦合电路组成,作用是将CCD最后一个转移栅下势阱中的信号电荷引出浮置扩散放大器(FDA)的读出方法是一种最常用的CCD电荷输出方法它包括两个MOSFET,并兼有输出检测和前置放大的作用,,它可实现信号电荷与电压之间的转换,具有大的信号输出幅度(数百毫伏),以及良好的线性和较低的输出阻抗6.3 电荷耦合器件的分类,CCD器件按结构可分为两大类:线阵CCD和面阵CCD最简单的线阵CCD是由一个输入二极管(ID)、一个输入栅(IG)、一个输出栅(OG)、一个输出二极管(OD)和一列紧密排列的MOS电容器构成,如下图所示1 线阵CCD,(,1)电极是金属的容易蔽光,即使是换成多晶硅,由于多层结构电极系统对入射光吸收、反射和干涉比较严重,因此光强损失大,量子效率低。
2)电荷包转移期间,光积分在继续进行,使输出信号产生拖影将光敏区和转移区分开,构成单边传输结构和双边传输结构单排传输结构是光敏区通过其一侧转移栅与CCD移位寄存器相连光敏元与CCD转移单元一一对应,二者之间设有转移栅,移位寄存器上覆盖有铝遮光,光敏区像元由光栅控制,如左下图所示双排传输结构是将两列CCD移位寄存器平行地配置在光敏区两侧,如,右上图,所示比单边结构型CCD的转移次数少近一半,它的总转移效率,亦大大提高,所以一般在大于256像素以上的线阵CCD摄像器件中,均采用双排传输结构2.面阵CCD,面阵CCD常见有两种:帧转移型(FT)和行间转移型(1LT),帧转移结构包括光敏区、暂存区、水平读出寄存器和读出电路4个部分其结构特征是光敏区与暂存区分开,光敏区由并行排列垂直的电荷耦合沟道组成各沟道之间用沟阻隔离,水平电极条覆盖在各沟道上光敏区与,暂存区CCD的列数、位数均相同,,不同之处是光敏区面积略大于,暂存区的面积读出寄存器的每一个转移,单元与垂直列电荷耦合沟道,一一对应,如下图所示FTCCD,行间转移(内线转移)结构采用了光敏区与转移区相间排列方式相当于将若干个单边传输的线阵CCD图像传感器按垂直方向并排,底部设置一个水平读出寄存器,其单元数等于垂直并排的线阵CCD图像传感器的个数,如下图所示。
ILTCCD,帧转移结构和行间转移结构各有其优缺点帧转移结构简单,灵敏度高;行间转移结构适合于低光强,“拖影”小6.4 CCD的性能参数,1 电荷转移效率和转移损失率,电荷转移效率是表征CCD器件性能好坏的一个重要参数设原有的信号电荷为 ,转移到下一个电极下的信号电荷 ,其比值,称为转移效率,没有被转移的电荷,Q,与原信号电荷之比,称为转移损失率,电荷转移效率与损失率的关系为,影响转移效率的因素很多,其中最主要因素还是表面态对信号电荷的俘获为此,采用“胖零”工作模式,所谓“胖零”工作模式就是让“零”信号也有一定的电荷来填补陷阱,这就能提高转移效率和速率一个CCD器件如果总转移效率太低,就失去实用价值当信号电荷转移n个电极后的电荷为 时,总转移效率为,CCD受光照的方式有,正面受光,和,背面受光,两种背面光照的光谱响应曲线与光电二极管相似,如下图中曲线2如果在背面镀以增透膜减少反射损失而使响应率有所提高,如图中曲线3正面照射时,由于CCD的正面布置着很多电极,光线被电极多次反射和散射,一方面使响应率减低,另一方面多次反射产生的干涉效应使光谱响应曲线出现起伏,如图中曲线1所示2 光谱响应率和干涉效应,为了减小在短波方向多晶硅的吸收,用SnO,2,薄膜代替多晶硅薄膜做电极,可以减小起伏幅度。
CCD由很多分立的光敏单元组成,根据奈奎斯特定律,它的极限分辨率为空间采样频率的一半,如果某一方向上的象元间距为,p,,则在此方向上象元的空间频率为1/,p,(线/毫米),其极限分辨率将小于1/2,p,(线对/毫米)若用调制函数来评价CCD的图像传递特性,那么,CCD的总调制函数MTF取决于器件结构(象元宽度、间距)所决定的几何MTF,1,、载流子横向扩散衰减决定的MTF,D,和转移效率决定的MTF,T,,总的MTF等与三者的乘积并且总MTF随空间频率的提高而下降3 分辨率和调制传递函数(MTF),4 动态范围,动态范围表征器件能在多大照度范围内正常工作一般定义动态范围是输出饱和电压和暗场时噪声的峰值电压之比一个好的CCD器件,其动态范围可达:100050005 暗电流和噪声,CCD的噪声可归纳为3类,即散粒噪声、转移噪声和热噪声散粒噪声:,在CCD中,无论是光注入、电注入还是热产生的信号电荷包的电子数总是围绕平均值上下变化,形成噪声CCD最小照度受噪声限制,最大照度受电荷处理容量的限制,,增大动态范围的途径是降低暗电流,特别是控制暗电流的尖锋,不均匀的暗电流及尖峰都会构成图像噪声,从而影响像质,也影响动态范围。
暗电流:,是指在既无光注入,又无电注人情况下输出的电流暗电流主要来源有三个:半导体衬底的热激发、耗尽区里产生复合中心的热激发和耗尽区边缘的少子热扩散。