9.3 圆的方程最新考纲考情考向分析掌握确定圆的几何要素,掌握圆的标准方程与一般方程.以考查圆的方程,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:半径r=知识拓展1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)20.( √ )(4)方程x2+2ax+y2=0一定表示圆.( )(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( √ )(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.( )题组二 教材改编2.[P132A组T3](2018南昌模拟)以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是( )A.(x-3)2+(y+1)2=1B.(x-3)2+(y-1)2=1C.(x+3)2+(y-1)2=1D.(x+3)2+(y+1)2=1答案 A3.[P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为_______.答案 (x-2)2+y2=10解析 设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即=,解得a=2,∴圆心为C(2,0),半径|CA|==,∴圆C的方程为(x-2)2+y2=10.题组三 易错自纠4.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是( )A.(-∞,-)∪(,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-)∪(,+∞)D.(-∞,-2)∪(2,+∞)答案 B解析 将x2+y2+mx-2y+3=0化为圆的标准方程得2+(y-1)2=-2.由其表示圆可得-2>0,解得m<-2或m>2.5.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )A.-11或a<-1 D.a=4答案 A解析 ∵点(1,1)在圆内,∴(1-a)2+(a+1)2<4,即-10),又圆与直线4x-3y=0相切,∴=1,解得a=2或a=-(舍去).∴圆的标准方程为(x-2)2+(y-1)2=1.故选A.题型一 圆的方程典例 (1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为__________.答案 (x-3)2+y2=2解析 方法一 由已知kAB=0,所以AB的中垂线方程为x=3.①过点B且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②联立①②,解得所以圆心坐标为(3,0),半径r==,所以圆C的方程为(x-3)2+y2=2.方法二 设圆方程为(x-a)2+(y-b)2=r2(r>0),因为点A(4,1),B(2,1)都在圆上,故又因为=-1,解得a=3,b=0,r=,故所求圆的方程为(x-3)2+y2=2.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为______________.答案 x2+y2-2x-4y-8=0或x2+y2-6x-8y=0解析 设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),将P,Q两点的坐标分别代入得又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,即(x1+x2)2-4x1x2=36,得D2-4F=36,④由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.跟踪训练 (2017广东七校联考)一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,则该圆的方程为______________________.答案 x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0解析 方法一 ∵所求圆的圆心在直线x-3y=0上,∴设所求圆的圆心为(3a,a),又所求圆与y轴相切,∴半径r=3|a|,又所求圆在直线y=x上截得的弦长为2,圆心(3a,a)到直线y=x的距离d=,∴d2+()2=r2,即2a2+7=9a2,∴a=1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.方法二 设所求圆的方程为(x-a)2+(y-b)2=r2,则圆心(a,b)到直线y=x的距离为,∴r2=+7,即2r2=(a-b)2+14.①由于所求圆与y轴相切,∴r2=a2,②又∵所求圆的圆心在直线x-3y=0上,∴a-3b=0,③联立①②③,解得或故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.方法三 设所求圆的方程为x2+y2+Dx+Ey+F=0,则圆心坐标为,半径r=.在圆的方程中,令x=0,得y2+Ey+F=0.由于所求圆与y轴相切,∴Δ=0,则E2=4F.①圆心到直线y=x的距离为d=,由已知得d2+()2=r2,即(D-E)2+56=2(D2+E2-4F).②又圆心在直线x-3y=0上,∴D-3E=0.③联立①②③,解得或故所求圆的方程为x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.题型二 与圆有关的最值问题典例 已知点(x,y)在圆(x-2)2+(y+3)2=1上,求x+y的最大值和最小值.解 设t=x+y,则y=-x+t,t可视为直线y=-x+t在y轴上的截距,∴x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即=1,解得t=-1或t=--1.∴x+y的最大值为-1,最小值为--1.引申探究1.在本例的条件下,求的最大值和最小值.解 可视为点(x,y)与原点连线的斜率,的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y=kx,由直线与圆相切得圆心到直线的距离等于半径,即=1,解得k=-2+或k=-2-,∴的最大值为-2+,最小值为-2-.2.在本例的条件下,求的最大值和最小值.解 =,求它的最值可视为求点(x,y)到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为,∴的最大值为+1,最小值为-1.思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x,y)有关代数式的最值的常见类型及解法.①形如u=型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;②形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;③形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点(a,b)的距离的平方的最值问题.跟踪训练 已知点P(x,y)在圆C:x2+y2-6x-6y+14=0上.(1)求的最大值和最小值;(2)求x+y的最大值与最小值.解 (1)方程x2+y2-6x-6y+14=0可变形为(x-3)2+(y-3)2=4.表示圆上的点P与原点连线的斜率,显然当PO(O为原点)与圆相切时,斜率最大或最小,如图①所示.设切线方程为y=kx,即kx-y=0,由圆心C(3,3)到切线的距离等于半径2,可得=2,解得k=,所以的最大值为,最小值为.(2)设x+y=b,则b表示动直线y=-x+b在y轴上的截距,显然当动直线y=-x+b与圆(x-3)2+(y-3)2=4相切时,b取得最大值或最小值,如图②所示.由圆心C(3,3)到切线x+y=b的距离等于圆的半径2,可得=2,即|b-6|=2,解得b=62,所以x+y的最大值为6+2,最小值为6-2.题型三 与圆有关的轨迹问题典例 (2017潍坊调研)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90,求线段PQ中点的轨迹方程.解 (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与。