文档详情

放大电路频率特性.doc

博****1
实名认证
店铺
DOC
1.34MB
约17页
文档ID:547169845
放大电路频率特性.doc_第1页
1/17

第三章放大电路的频率特性§3.1 频率特性的一般概念一.频率特性的概念对低频段, 由于耦合电容的容抗变大, 高频时1/ωc<

二.线性失真线性失真有两种形式:相频失真和幅频失真一个周期信号经傅里叶级数展开后,可以分解为基波、一次谐波、二次谐波等多次谐波设输入信号Ui(t)由基波和二次谐波组成,如图(a)所示, 经过线性电路后, 基波与二次谐波振幅之间的比例没有变化, 但是它们之间的时间对应关系变了,叠加合成后同样引起输出波形不同于输入波形, 这种线性失真称之为相频失真 线性失真的第一种形式如图(b)所示假设输入波形Ui(t)仅由基波、二次谐波构成, 它们之间的振幅比例为10∶6,如图(b)上所示该输入波形经过线性放大电路后,由于放大电路对不同频率信号的不同放大倍数,使得这些信号之间的比例发生了变化, 变成了10∶3,这二者累加后所得的输出信号Uo(t)如图(b)下所示 对比Ui(t), 可见两者波形发生了很大的变化,这就是线性失真的第一种形式,即幅频失真 §3.2 三极管的频率参数 (1)(2)(3) β的幅频特性一. 共发射极电流放大系数β的截止频率fβ 将 值下降到β0的0.707倍时的频率fβ定义为β的截止频率按公式(3 - 4)也可计算出, 当f=fβ时, 二. 特征频率f定义 值降为1时的频率fT为三极管的特征频率。

将f=fT和 代入(2)式, 则得由于通常fT/fβ>>1, 所以上式可简化为fT≈β0fβ 上式表示了fT和fβ的关系 三. 共基极电流放大系数α的截止频率fα 由上述 和 的关系得 (4) (5)定义当 下降为中频α0的0.707倍时的频率fα为α的截止频率 fα、fβ、 fT之间有何关系? 将式(1)代入式(4)得四. 三极管混合参数π型等效电路 1.完整的混合π型模型 (1) 混合π型参数和h参数之间的关系 2. 简化的混合π型模型 (2)Cμ的等效过程令此式表明, 从b′、e两端看进去, 跨接在b′、c之间的电容Cμ的作用, 和一个并联在b′、e两端, 其电容值为 的电容等效这就是密勒定理如图(2)中(c)所示 §3.3 共e极放大电路的频率特性 (1) 共e极放大电路及其混合π型等效电路具体分析时, 通常分成三个频段考虑:  (1) 中频段: 全部电容均不考虑, 耦合电容视为短路, 极间电容视为开路。

 (2) 低频段: 耦合电容的容抗不能忽略, 而极间电容视为开路  (3) 高频段: 耦合电容视为短路, 而极间电容的容抗不能忽略  这样求得三个频段的频率响应, 然后再进行综合 这样做的优点是, 可使分析过程简单明了, 且有助于从物理概念上来理解各个参数对频率特性的影响 下面分别讨论中频,低频,高频时的频率特性一. 中频放大倍数Ausm由图(2),可得 (2)中频段等效电路 由上述关系代入Uo的表达式中,得3-31二.低频放大倍数Ausl及波特由图(3),可得3.32 (3)低频段等效电路式中p、ri同中频段的定义将 、 代入式3-32, 得将公式(3 - 31)代入, 并令 3-33 3-34当f=fl时, , fl为下限频率。

由(3 - 33)式可看出, 下限频率fl主要由电容C1所在回路的时间常数τl决定将式(3 - 34)分别用模和相角来表示: 3-353-36根据公式(3 - 35)画对数幅频特性, 将其取对数, 得 3-37先看式(3 - 37)中的第二项, 当f>>fl时故它将以横坐标作为渐近线;当f<>fl时, 趋于0, 则φ≈-180°; 当f<

三.高频电压放大倍数Aush及波特图 由图(1),可得 (1)高频等效电路由等效电路可求得 则 3-38 (2) 简化等效电路 为求出 与 的关系, 利用戴维宁定理将图(1)进行简化, 如图(2)所示, 其中由图(2),可得代入3-38式,得令 上限频率为 则 3-39式(3 - 39)也可以用模和相角来表示 高频段的对数幅频特性为 (3)高频段对数频率特性 四.完整的频率特性曲线(波特图) 将上述中频,低频和高频时求出的放大倍数综合起来,可得共e基本放大电路在全部频率范围内的放大倍数的表达式常用增益带宽积表示放大电路性能的优劣,结果如下画波特图的步骤(1)由电路求出的表达式,(2)写出和的表达式3)画出岁数幅频特性和相频特性关键是要知道表达式分子中的系数以及近似特性发生转折处的频率,即截止频率fH或fL画复杂电路或系统的波特图,关键在于能画出一些基本因子,如常数K,jf/fL,,等的波特图(4)共射极基本放大电路的幅频和相频特性曲线 五.其它电容对频率特性的影响 由以上推导上,下限频率时,可以看出一个规律,求某个电容所决定的截止频率,只需求出该电容所在回路的时间常数,然后由下式求出其截止频率即可1.耦合电容C2。

C2只影响下限频率,频率下降,C2容抗增大,其两端压降增大,使Uo下降,从而使Au下降求f1的等效电路如图(5)所示 (5)C2的下限频率的等效电路 2.射极旁路电容Ce 中频段,高频段Ce容抗很小,可视为短路,当频率下降至低频段,其容抗不可忽略其电路如图(6)所示 (6)Ce对频率特性的影响3.输出端分布电容Co 当输出端带动容性负载,其电容并联在输出端,它影响上限频率中频段,低频段时Co的容抗很小,视为开路高频段时,Co容抗不可忽略,则有 §3.3多级放大电路的频率特性一.多级放大电路的通频带fbw 多级放大电路的频宽窄于单级放大电路的频宽它的上限频率小于单级放大器的上限频率;下限频率大与单级放大器的下限频率由前面的各级放大电路总的电压放大倍数,是各级放大倍数的乘积即中频区时 在上、 下限频率处, 即fl=fl1=fl2, fh=fh1=fh2处, 各级的电压放大倍数均下降到中频区放大倍数的0.707倍, 即 而此时的总的电压放大倍数为 截止频率是放大倍数下降至中频区放大倍数的0.707时的频率。

所以, 总的截止频率fh<fh1=fh2; fl>fl1=fl2总的频带为二.上下频率的计算可以证明,放大电路的上限频率和组成它的各级电路的上限频率之间的关系为下限频率满足下述近似关系: 多级放大器中, 其中某一级的上限频率fhk比其它各级小很多, 而下限频率flk比其它各级大很多时, 则总的上、下限频率近似为例题分析例1 某放大电路在低频段的输入电路如图,画出它的对数幅频特性和相频特性解:(1)华歘电路的波特图,首先要求出它的的表达式可见,这是一个RC高通电路所以,电路的(2) 写出幅频特性和相频特性的表达式, 对数幅频特性表达式为(3)画对数幅频特性和相频特性横坐标:为f (按对数刻度)。

下载提示
相似文档
正为您匹配相似的精品文档