2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.1)、于集、集合运算法则、直积、满射、单射、一一映射、逆射、单值函数、多值函数2.了解函数的有界性.单调性.周期性和奇偶性.1)奇函数加偶函数等于非奇非偶函数2)并非每个周期函数都有最小正周期,如狄利克雷函数3)单射才有反函数3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.1)、双曲、反双曲函数及其图形2)、对数、指数、三角、幂函数及其图形sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)和差化积sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2))5.了解数列极限和函数极限(包括左极限与右极限)的概念.1)、极限唯一性、有界性(局部有界性)、保号性(局部保号性)、收敛数列及其子数列关系(函数极限与数列极限关系6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.1)、无穷小、无穷大、有界函数、常数之间的运算规律2)、极限之间的运算关系及大小比较3)、复合函数的极限运算法则4)、 5)、夹逼准则、单调有界准则、柯西极限存在准则7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.1)、无穷小的极限存在定义2)、无穷小与无穷大的关系定义3)、关于高阶无穷小的等价无穷小、无穷小求极限定义8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.1)、跳跃间断点、可去间断点(第一类)、无穷间断点、震荡间断点(第二类)9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.题型汇总与技巧1、 求数列、函数极限1)、利用各类运算法则进行恒等变形(尤其注意三角函数的恒等变形)2)、对于0/0,∞/∞型,对于可消去分子分母中为0,无穷大的因子,也可利用罗比达法则进行求导运算、或者利用等价无穷小替换。
3)、对于0*∞型将其化为第二类形式进行运算4)、对于1^∞型或0^∞未定式,可化为e的指数形式进行求解5)、当x或n—∞时,将各因子的分母化为递增函数6)、将函数化为两个重要极限的形式进行求解7)、利用夹逼法则求数列或函数的极限10)、对于变量比较复杂的数列或函数,通过变量替换将其简化11)、以上各种方法中,无穷小和罗比达法则只能用于函数求极限,若要在数列极限中应用,需通过12)转化,其他技巧在求函数和数列极限时都可以通用12)、通过函数求函数数列的极限或通过数列求子数列的极限13)、若函数f(x)或数列a(n)存在不为0的极限,g(x)或b(n)极限不存在也不为无穷大,则将两者作各种运算其极限都不存在也不为∞,若两个函数都不存在也不为∞,则需作具体分析14)、求复合函数lim f[g(x)]极限,函数符号与极限可以交换次序15)、通过递归数列求数列极限16)、利用导数定义求函数极限2、对于含变限积分的不定式的极限,一般通过罗比达法则将积分化为函数求解1)、通过观察积分是否为0或无穷大,若是,通过罗比达法则求解2)、如果积分函数里面含有自变量,则通过变量代换将x置换出积分函数2、 求含有参数的数列或函数的极限1)、需考虑参数的不同取值而分类求极限的值3、 通过极限值求函数或数列的参数1)、若极限值为0或∞,根据无穷小与常数的运算法则反推参数2)、4、 闭区间上连续函数的性质 1)、一般将区间端点上的函数值化为异号的数2)、可以将等式两边的项移到一边构造一个函数5、 求函数的连续性及间断点类型1)、首先需列出函数的定义域,并观察出定义不存在的点6、 在定义不存在的点求其左右极限二、一元函数微分学考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.1)、导数与单侧导数的定义,两种表达方式,限定条件及导函数的定义2)、边际成本、边际收益、总利润函数,总收益函数、边际利润、总成本函数、需求函数、弹性等3)、用显示方程和隐式方程表示的平面曲线4)、求目标函数的最大值和最小值问题2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.1)、理解反函数的求导法则2)、各初等函数的求导公式3)、复合函数求导法则:幂指函数求导、反函数求导、隐函数求导和变限积分求导3.了解高阶导数的概念,会求简单函数的高阶导数.1)、简单初等函数的n阶导数公式2)、高阶导数的四则运算法则(和、差、积-也即莱布尼茨公式)3)、二项式定理 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.1)、微分的四则运算法则2)、复合函数的微分法则(一阶微分形式的不变性)5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.1)、费马引理2)、罗尔定理及拉格朗日定理的限制条件、几何意义及证明过程3)、常数函数判定定理3)、有限增量定理及其公式4)、泰勒公式(带拉格朗日余项及佩亚诺余项),麦克劳林公式(带拉格朗日余项及佩亚诺余项)5)、四个基本初等函数在x=0处的n阶麦克劳林公式6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.1)、区间上函数单调性的定义及判别法则2)、极值点、驻点、拐点的定义3)、极值点的必要条件及第一充分条件、第二充分条件4)、通过导数求函数极值点及其极值的四步法8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.1)、函数图形凹凸性的定义2)、区间上函数凹凸型的判定法则(两个,见复习全书)3)、拐点的充分判定定理9.会描述简单函数的图形.1)、利用导数作函数图形的五步法(见教材)2)、求渐近线的方法(见复习全书)题型汇总与技巧1、三、一元函数积分学考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.。