效率)四.合并排序与快速排序的比较:1.分解过程:合并排序:将序列一分为二即可(简单)快速排序:需调用Paitition函数将一个序列划分为子序列分解方法相对较困难)2.子问题解合并得到原问题解的过程:合并排序——需要调用Merge函数(时间复杂度为O(n))来实现快速排序——一旦左右两个子序列都已分别排序,整个序列便自然成为有序序列异常简单,几乎无须额外的工作,省去了从子问题解合并得到原问题解的过程)3.掌握合并排序和快速排序的具体排序方法(数据结构内容)图5-2,图5-4快速排序的划分操作)第六章:贪心法一.1.可行解:满足约束条件的解;2.最优解:使目标函数取得最大(或最小)值的可行解,它用来衡量可行解的好坏;3.贪心法是一种求解最优化问题的算法设计策略4.贪心法的应用领域有:背包问题、最小代价生成树(Kruskal算法和Prim算法)、哈夫曼树、文件的最佳合并树等;5.贪心法是通过分步决策的方法来求解问题的,贪心法每一步上用作决策依据的选择准则被称为最优量度标准(局部最优解);二.可以用贪心法求解的问题一般具有两个重要性质:1.贪心选择性质:所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到;(这是贪心法和动态规划法的主要区别)2.最优子结构性质:一个问题的最优解包含其子问题的最优解(这是贪心法和动态规划算法的共同特征)三.贪心算法的典型应用:背包问题(基本步骤):1.首先计算每种物品单位重量的价值pi/wi并按非增次序进行排序;2.然后依贪心选择策略,选择单位重量价值最高的物品装入背包;依此策略一直地进行下去,将尽可能多的物品全部装入背包,直到将背包装满;3.若装入某件物品时,不能全部装下,而背包内的物品总重量仍未达到w,则根据背包的剩余载重,选择单位重量价值次高的物品并尽可能多地装入背包。
参考例6-1,试验标准3)四.Prim算法和Kruskal算法的比较:1. Prim算法:保证S所代表的子图是一棵树的前提下,选择一条最小代价的边e=(u,v);(见图6-10)2. Kruskal算法:构造生成树的过程中,边集S代表的子图不一定是连通的;按边代价的非减次序考察E中的边,从中选择一条代价最小的边e=(u,v);(见图6-11)3. Prim算法:由于Prim算法中每次选取的边两端总是一个已连通顶点和一个未连通顶点,故这个边选取后一定能将该未连通点连通而又保证不会形成回路;因此没选择一条边后,无须再判断边集S Ue是否包含回路;4. Kruskal算法:为了确保最终得到生成树,每选择一条边时,都需要判定边集S Ue是否包含回路五.贪心法的基本要素:1.最优量度标准:(1)选择最优量度标准是使用贪心法求解问题的核心问题;(2)贪心算法每一步作出的选择可以依赖以前作出的选择,但不依赖将来的选择,也不依赖一子问题的解;(3)对于一个贪心算法,必须证明所采用的量度标准能够导致一个整体最优解;2.最优子结构特性:见本章第二点六.一个问题能够使用贪心策略的条件:1.问题的解是向量结构(n元组形式);2.具有最优子结构特性;3.能够获取最优量度标准;4.能证明是最优解。
第七章:动态规划法一.动态规划法的几个步骤:(动态规划法是用于处理不具备贪心准则的问题,用于解决分治法的子问题重叠现象)1.刻画最优解的结构特性;2.递归定义最优解值;3.以自底向上方式计算最优解值;4.根据计算得到的信息构造一个最优解二.动态规划法的基本要素:1.最优子结构特性:一个问题的最优解包含其子问题的最优解(见第五章:贪心法);1.重叠子问题:递归算法求解问题时,每次产生的子问题并不总是新问题,有些问题被反复计算多次三.动态规划法与分治法的比较:共同点:将待求解的问题分解成若干个子问题,先求子问题,然后再从这些子问题的解得到原问题的解;不同点:1.适合于用动态规划法求解的问题,分解得到的各子问题往往不是相互独立的;而分治法中的子问题是相互独立的;2.动态规划法用表保存已求解过的子问题的解,再次碰到同样的子问题时不必重新求解,而只需查询答案,故可获得多项式级时间复杂度,效率较高;而分治法中对于每次出现的子问均求解,导致同样的子问题被反复求解,故产生指数增长的时间复杂度,效率较低四.动态规划法与贪心法的比较:共同点:都是求解最优化问题;都要求问题具有最优子结构性质;不同点:1.求解方式不同:动态规划法是:自底向上;而贪心法是:自顶向下;以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为一个规模更小的子问题;2.对子问题的依赖不同:动态规划法:依赖各子问题的解,所以只有在解出相关子问题后,才能作出选择;应使各子问题最优,才能保证整体最优;而贪心法:不依赖于子问题的解;仅在当前状态下作出最好选择,即局部最优选择,然后再去解作出这个选择后产生的相应的子问题。
五.两类背包问题:1.0/1背包问题:如果每一件物品不能分割,只能作文整体或者装入背包,或者不装入;2.一般背包问题或简称背包问题:如果物品时可以分割的,也就是允许将其中的一部分装入背包六.动态规划法的典型应用:多段图问题多段图问题是求从源点s到汇点t的一条长度最短的路径(用从后逐步向前递推的方法)(如例7-1,其求解步骤见P138,图7-1)第八章:回溯法一.1.回溯法是比贪心法和动态规划法更一般的方法,其解为n-元组形式;2.通过搜索状态空间树来求问题的可行解(满足约束条件的解)或最优解(使目标函数最大或最小的解);3.回溯法使用约束函数和限界函数来压缩需要实际生产的状态空间树的结点数;4.通常情况下,回溯法是为了找出满足约束条件的所有可行解5.回溯法适用于解一些组合数相当大的问题二.回溯法:(有递归回溯和迭代回溯)1.在求解的过程中,以深度优先方式逐个生产状态空间树中的结点,求问题的可行解或最优解;2.为提高搜索效率,在搜索过程中用约束函数和限界函数(统称剪枝函数)来剪去不必要搜索的子树,减少问题求解所需实际生产的状态空间树结点数,从而避免无效搜索3.常用的剪枝函数:用约束函数剪去已知不含答案状态(可行解)的子树;用限界函数剪去得不到最优答案结点(最优解)的子树。
三.回溯法与分枝限界法的比较:1.回溯法:使用剪枝函数的深度优先生成状态空间树中的结点的求解方法;2.分枝限界法:使用剪枝函数的广度优先生成结点的求解方法四.回溯法的本质:1.是一种深度优先搜索方式,逐一动态生产状态空间树中的结点并检测答案结点的方法;2.不同于穷举搜索,回溯法使用约束函数,剪去那些可以判定不含答案状态的子树,从而提高算法效率五.一个问题能够用回溯法求解的特点(或条件):1.它的解具有n-元组形式;2.问题提供显示约束来确定状态空间树,并提供隐式约束来判断可行解;(可以用状态空间树描述,并采用判定函数识别答案结点)3.应能设计有效的约束函数,缩小检索空间六.n-皇后问题(见P180的4-皇后问题,会画图8-3和图8-6)第九章:分枝限界法一.分枝限界法的基本做法:1.以广度优先的方式搜索问题的状态空间树,每一个活结点只有一次机会成为E-结点;2.按照广度优先原则,活结点一旦成为E。