文档详情

探究 GNSS 技术在大坝变形监测中的应用

M****1
实名认证
店铺
DOCX
14.59KB
约4页
文档ID:482902311
探究 GNSS 技术在大坝变形监测中的应用_第1页
1/4

探究GNSS技术在大坝变形监测中的应用摘要:随着地质灾害的不断涌现,对于大坝变形测量研究已经成为各大学者研 究的热点传统的变形监测是采用高精度的监测网对大坝变形要素进行监测,但 由于大坝所处地形条件的影响,导致监测网的网形差和监测点的位置精度不精确, 影响测量的准确性本文通过对GNSS技术的优点和大坝变形因素进行分析,对 GNSS技术在大坝变形监测中测量过程进行探讨,提出GNSS技术在大坝的变形监 测的发展趋势,推动着变形监测理论和技术方法的不断创新和发展关键词:GNSS技术;大坝变形监测;应用引言如今随着政府和社会对科技的重视力度不断加强,科学技术的不断精进,测 绘技术的发展变化可谓一日千里其中,全球导航卫星系统(GNSS)自面世以来, 给整个测绘行业带了突飞猛进的进步当下,GNSS技术已经在大坝变形监测中 得以广泛的应用日臻完善的GNSS技术以连续、实时、定位精准高、全天候作 业和自动化程度高等优势特点使之在大坝的变形监测中得以较大程度的实现 GNSS技术可以大大提高大坝变形检测中的数据精准度,而且全程实现全自动化 操作,十分便捷技术人员可以及时获取测量结果,从而了解到滑坡的全方位动 态和可能性,掌握滑坡发生发展的规律,从而解决常规测量的弊端。

1大坝变形监测的概述全球导航卫星系统GNSS始于19世纪70年代,并广泛应用于定位工作中,逐 渐在测量领域中占据重要的位置1998年,我国的隔河岩大坝外部变形首次采用 GNSS自动化监测系统GNSS技术是一项高科技技术,利用卫星技术进行全方面 的测量它能够提供的时间信息和三维坐标等技术参数的精度很高,对测量领域 产生了重大意义为了保证大坝的安全运营,减少安全事故的发生,需要对大坝 的变形因素进行分析,并实时监测利用GNSS监测大坝的变形是现在应用最多 的技术,具有全天候测量、定位速度快、连续实时、自动化程度高的优势1.1大坝变形的影响因素我国的大坝数量也不断增加,需要对大坝的变形要素进行连续、周期性的测 定和实时、准确的安全监测大坝变形的主要因素包括:静水压力的作用,大坝 外体受到水平推力,导致大坝产生变形,水库由于自身重力作用会导致库底发生 变形;坝体温度变化,坝体的温度随着季节变化会使混凝土无规律的胀缩,会引 起大坝坝顶下陷,新建成的大坝自身的混凝土会发生胀缩,这样导致了坝体变形; 时效变化,时效变化是由于混凝土热胀冷缩引起的变形,和基础岩层在载荷作用 下产生时效变化,时效变化在施工或运营初期表现显著,时间长久后,建筑会趋 于稳定,时效变化会变小。

1.2变形监测现状变形监测在测量领域内占据着重要的位置,从一个工程的施工到完工,以及 后续的运营都需要进行不断地监测,掌握变形的情况,及时解决潜在安全问题, 保证工程的正常运营在大坝变形监测中,传统的变形监测是采用高精度的监测网对大坝变形要素 进行监测,但由于大坝所处地形条件的影响,导致监测网的网形差和监测点的位 置精度不精确,影响测量的准确性这种方法的劳动强度很大,观测时间较长, 没有实现自动化监测随着GNSS技术的出现,使变形监测实现了从数据采集、 数据传输、平差计算和变形分析的连续自动化经研究发现,利用GNSS技术进行水平位移的监测精度在±2mm以下,高程的测量误差在±10mm以下1.3 GNSS技术优点传统的变形监测技术由于地形原因导致变形监测精度低,影响变形监测结果 GNSS技术的优点是监测站没有时间限制,能够全天候监测,不会受到气候等因素 的影响,在各种气候中都能进行变形监测;实现监测自动化,GNSS接收机的数 据收集是自动进行的,使自动监测过程(包括数据采集、处理、传输、分析)实 现全自动化,操作简单,提高监测效率;能够降低系统误差,在利用GNSS技术 进行变形监测中,不会影响变形监测点坐标之间的差异值,会降低在大气层中卫 星信号的传播误差对变形监测的影响;测量精度高,监测速度快;利用GNSS技 术进行的监测具有良好的抗干扰性和保密性,能够进行实时测量;为坐标提供3D 立体信息,能够精确测量变形点的3D坐标。

2 GNSS技术在变形监测中的应用2.1 GNSS技术变形监测模式GNSS技术在大坝的变形监测中分为周期性重复变形监测、固定连续性变形监 测和实时动态监测2.1.1 GNSS周期性重复变形监测当被监测工程的变形速率缓慢,在一定的空间域和时间域上被认作是稳定的, 可以利用GNSS周期性重复变形监测针对每一个周期测量监测点之间的相对位 置,经过计算两个观测周期之间的位置变化来测定其变形监测周期可以根据大 坝的特性及危害程度来确定这种模式是通过边或网连接的方式建成监测网,并 用平差计算法得到监测点的三维坐标,根据坐标差值来确定监测点的变形量2.1.2 GNSS固定连续性变形监测利用固定的监测仪器对变形进行长时间的数据收集的方式称为固定连续性变 形监测在这种模式下测量是连续性的,时间分辨率高通过选择重点和关键部 位布设永久GNSS观测站,在这些测站上不间断观测,并进行数据处理由于大 坝变形的缓慢性,因而在对监测数据处理时,把一段时间的观测数据作为一组, 用静态相对定位和动态相对定位方式处理2.1.3 GNSS实时动态监测实时动态监测方式是实时监测大坝的动态变形,其特点是采样密度高,例如 每秒钟采样一次,而且要计算每个历元的位置。

数据处理主要采用运动中载波相 位模糊度解法,用已求得的整周模糊度计算每一历元接收机的位置,进而分析大 坝的变形特征及原因变形监测要求实时性,需要建立GNSS自动监测系统,采 用全天候实时监测,能够及时了解监测点位置的实时变化情况GNSS技术作为一 种新的监测技术,在大坝的变形监测中应用越来越广泛,例如在隔河岩大坝建立 的GNSS自动化监测系统,主要包括数据的采集、传输和处理2.2 GNSS监测网数据处理方法经过GNSS观测得到的数据要经过基线解算和平差计算才能转化为可靠的数 据成果GNSS数据处理方法主要包括两个方面:首先对监测获得原始数据进行处 理,得到观测网的基线解;然后对观测网的基线解进行整体平差和分析从而得到 最终的整体解对于基线解和平差分析是数据处理的重要部分,特别是在观测网 多个子网的粗差分析、系统误差和偶然误差的分析国内主要利用GPSADJ系列 平差处理软件和同济大学的TGPPS静态定位后处理软件,来处理二维和三维网的 平差对于B级GNSS监测网数据,现阶段采用的计算方法是利用美国研发的GAMIT/GLOBK软件解算平差,参考框架选定UTRF2000框架,采用IGS精密星历。

通过网络从精密星历中选取10个IGS站观测数据和GNSS数据处理的资料(其中 包括全球H文件解、精密星历、最新历表等资料)通过建立LCHELP解算模式 获得基线信息,利用GLOBK对网平差求整体解,从而获取各基准点的坐标C级 监测网观测数据经过转化为RINEX数据文件,采用South GPS Processor V4.0进行 数据处理,在基线解算中前先对受外界干扰的卫星信号进行剔除,再利用双差固 定解进行计算,坐标取位为0.001mD级GNSS监测网数据在C级的处理方法上, 根据不同的网形,选择平差方法,优先选择WGS-84下的单点无约束自由网平差, 获得平差报告坐标取位为0.001m2.3 GNSS变形监测中存在的问题GNSS已经广泛应用于大坝的变形监测中,但在特殊地形(高山峡谷等)中, GNSS卫星信号会被干扰或遮挡,从而影响监测的精度和可靠性,甚至导致无法监 测点位选择自由度较低,函数关系过于复杂、误差源较多等是其明显的不足之 处根据资料显示,GNSS监测对水平位移监测精度高,对垂直位移监测精度低, 水平位移精度是垂直位移精度的2倍左右这样很难同时对水平和垂直位移进行 高精度的测定。

现阶段,对于GNSS变形监测数据的处理是利用整周模糊度动态 解算法,这种方法的精度是厘米级,而变形监测要求精度高此外,由于监测点在较短的时间内变形微小,且会存在误差,如何在误差干 扰中对监测数据进行有效提取是亟待解决的技术问题2.4 GNSS变形监测的发展趋势通过研究国内外对于GNSS技术在变形监测中的研究,提出以下发展趋势:① GNSS技术与其他变形监测技术相结合由于GNSS技术在变形监测中存在 局限和不足,需要将GNSS技术和近景摄影测量和特殊变形测量技术进行结合, 将不同监测方法的优势发挥到最大化,提高大坝变形监测效率将GNSS技术和 INSAR技术进行集成,能够实现对四维变形的整体动态的高精度监测② 监测信息的反馈和自动报警技术利用GNSS技术进行变形监测后需要将 变形监测情况(包括监测区域和监测结果)发布在互联网上,同时利用计算机技 术生成变形过程(包括变形速度和预测)的图表,能实时观察到变形过程,并配 合自动报警技术,当变形达到一定范围后,自动报警装置自动报警,使观测人员 能及时做出反应,降低损失③ 建立“3S”的实时分析系统3S”包括全球导航卫星系统(Global Navigation Satellite System, GNSS)、地理信息系统(Geographic Information System, GIS)和遥感技术(Remote Sense, RS)。

随着科学技术的飞速发展“, 3S”技术已经开始相互集成融合基于“3S 〃技术,对大坝进行实时变形监测, 能够自动的分析数据和处理数据,科学地预测变形的发展趋势,能够合理有效的 降低和预防灾害的发生3结论GNSS技术具有监测精度高、速度快、全天候测量和自动化监测等优势,在大 坝变形监测的实践中取得很重要的成果,利用GNSS技术的自动化数据处理系统 获得精度高的测量数据,为建立自动化监测系统奠定了基础GNSS技术在实践应 用中仍然存在不足,需要将GNSS技术与其他监测技术集成在一起,建立监测信 息反馈系统、自动报警系统和“3S 〃的实时分析系统,提高大坝的变形监测水 平、监测精度和监测效率本研究通过对大坝变形原因和变形监测现状出发,分 析了 GNSS技术的优点和在大坝变形监测中的应用,发现在变形监测中的问题, 提出GNSS技术在大坝变形监测中的发展趋势,为以后的大坝变形监测具有指导 意义,对保证大坝的安全运营具有重大作用参考文献:[1] 胡友健,等.论GPS变形监测技术的现状与发展趋势.测绘科学,2006, 31(5): 155-157.[2] 周山,文小兵,李陶,等.近景数字摄影测量及动态卡尔曼滤波在建筑物变形观测中的应用[J].东北测绘,2000(3): 29-30.[3] 周硕愚,张跃刚,丁国瑜,等.依据GPS数据建立中国大陆板内块体现时运动模型的初步研究[J].地震学报,2008,20(4): 347-355.。

下载提示
相似文档
正为您匹配相似的精品文档