摘 要定积分是数学分析中的一个基本问题,而计算定积分是最基本最重要的问题.它在许多实际问题有着广泛的应用.下面针对定积分的计算方法做一个比较详细的总结,常见的包括分项积分、分段积分法、换元积分法、分部积分法.但对于不能直接找出原函数的定积分,或者被积函数比较复杂时,往往是比较难求出原函数的,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,本文总结用欧拉积分求解定积分、留数在定积分上的运用、巧用二重积分求解定积分、反函数求解定积分以及带积分型余项的泰勒公式在定积分上的应用,并列举相应的例子进行说明.关键词: 定积分; 被积函数; 原函数; 牛顿-莱布尼兹公式 目 录1 引言2 定计算的计算方法2.1 分项积分法·················································(1)2.2 分段积分法·················································(2)2.3 换元积分法 ················································(3)2.4 分部积分法 ················································(5)2.5 欧拉积分在定积分计算中的应用·······························(9)2.6 留数在定积分计算上的应用···································(10)2.7 巧用二重积分求解定积分·····································(10)2.8 反函数法求解定积分·········································(10)2.9 带积分型余项的泰勒公式在定积分上的应用·····················(11)3 总结················································(12)浅谈定积分的计算1.引言定积分的计算是微积分学的重要内容,其应用十分广泛,它是包括数学及其其他学科的基础.本文归纳总结了常见的定积分计算方法(如[1-4]),其中包括分项积分法、分段积分法、换元积分法以及分部积分法.另外对于找不出原函数的定积分,或者被积函数十分复杂时,往往是很难求出其原函数,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,我们有必要在此基础上研究出新的计算方法.对此本文总结了一些另外的方法(如[5-9]),其中包括欧拉积分求解定积分、运用留数计算定积分、巧用二重积分求解定积分、反函数法求解定积分以及带积分型余项的泰勒公式在定积分上的应用,进行了一一列举,并通过例子加以说明.2.定积分的计算方法2.1 分项积分法我们常把一个复杂的函数分解成几个简单的函数之和:,若右端的积分会求,则应用法则,其中,是不全为零的任意常数,就可求出积分,这就是分项积分法.例2-1[1] 计算定积分. 解 利用加减一项进行拆项得===+=++.=.例2-2 计算定积分.解 记J==+再将第二项拆开得J=++=++=+.2.2 分段积分法 分段函数的定积分要分段进行计算,这里重要的是搞清楚积分限与分段函数的分界点之间的位置关系,以便对定积分进行正确的分段.被积函数中含有绝对值时,也可以看成分段函数,这是因为正数与负数的绝对值是以不同的方式定义的,0就是其分界点.例2-3[2] 计算定积分.解 由于为偶函数,在上的分界点为,所以=+==.例2-4 计算定积分,其中.解 由于函数的分界点为,所以,令后,有==+=+=+=.2.3 换元积分法(变量替换法)换元积分法可以分为两种类型:2.3.1 第一类换元积分法(也被俗称为“凑微分法”)例2-5[3] 计算定积分.解 === ===.例2-6 计算定积分. 解 === = ==.2.3.2 第二换元积分法常用的变量替换有:①三角替换;②幂函数替换;③指数函数替换④倒替换.下面具体介绍这些方法.① 三角替换例2-7[4] 计算定积分.解 由于=,故可令,于是========.②幂函数替换例2-8 计算定积分. 解 作变量代换,得到=,因此======.③倒替换例2-9 计算定积分. 解 =令得===.2.4 分部积分法定理 3-1[5]若,在上连续,则或.利用分部积分求的解题方法(1)首先要将它写成得形式.选择,使用分布积分法的常见题型:表一被积函数的形式所用方法,,,其中为次多项式,为常数进行次分部积分,每次均取,,为,多项式部分为,,即多项式与对数函数或反三角函数的乘机取为,,,等为.分部积分一次后被积函数的形式发生变化,取=(或),,为(或),进行两次分部积分(2)多次应用分部积分法,每分部积分一次得以简化,直至最后求出.(3)用分部积分法有时可导出的方程,然后解出.(4)有时用分部积分法可导出递推公式.例2-10[6] 计算定积分. 解 于,所以==连续使用分部积分得====.例2-11[7] 计算定积分.解 因为=== 所以= = 于是=+ ==从而 = =======.例2-12[8] 计算定积分,其中为正整数.解 =作变量替换得=====作变量替换得==-==当为偶数时,===当为奇数时,=====.2.5 欧拉积分在定积分计算中的应用定义 2-1[4] 形如=的含参变量积分称为函数,或第一类积分。
形如的含参变量积分称为函数,或第二类积分定理 2-2[4] 函数与函数之间具有如下关系:=,.定理 2-3[4](余元公式).命题 2-1[4] =.例2-13[4] 计算.解 令,则有,利用三角恒等式可得,,将其带入原式得====从而=.2.6 留数在定积分计算上的运用例2-14[9] 计算积分.解 令,则,,======.2.7 巧用二重积分求解定积分例2-15[10] 计算积分.解因为,所以===故.2.8 反函数法求解定积分定理 2-4[11] 若函数在上严格单调且连续,其反函数是,且,则.定理 2-5[11] 设在上可积,.若在上存在反函数(), 在上可积且存在原函数,在上可积,则=.例2-16[11] 计算定积分.解 记,它的一个原函数为,的反函数为,由定理得==.2.9 带积分型余项的泰勒公式在定积分计算中的应用定理 2-5[12]若函数在点的领域内有连续的阶导数,则,有+,其中称为积分型余项.例2-17[12] 计算.解 设,则===.总结本文归纳总结了定积分计算方法,其中包括分项积分法、分段积分法、换元积分法、分部积分法、用欧拉积分求解定积分,运用留数计算定积分,巧用二重积分求解定积分、反函数法求解定积分以及带积分型余项的泰勒公式在定积分上的应用等,进行了一一列举,并通过例子加以说明.。