山西省浑源县2025学年高一上数学期末联考试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与直线平行的直线方程是( )A. B.C. D.2.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点3.给定函数:①;②;③;④,其中在区间上单调递减函数序号是( )A.①② B.②③C.③④ D.①④4.已知函数的图象经过点,则的值为( )A. B.C. D.5.函数且的图象恒过定点()A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)6.设集合,则=A. B.C. D.7.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④8.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A.x1 B.x2C.x3 D.x49.下列函数中为偶函数的是( )A. B.C. D.10.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或2二、填空题:本大题共6小题,每小题5分,共30分。
11.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.12.某同学在研究函数 f(x)=(x∈R) 时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)13.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.14.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的15.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.16.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17.如图,在平面直角坐标系中,角的终边与单位圆交于点.(1)若点的横坐标为,求的值.(2)若将绕点逆时针旋转,得到角(即),若,求的值.18.已知函数f(x)=2x,g(x)=(4﹣lnx)•lnx+b(b∈R)(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;19.(1)已知,求的值; (2)已知,,且,求的值20.已知且.(1)求的解析式;(2)解关于x不等式:.21.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求的最大值以及此时x的取值集合参考答案一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.2、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断; C.在同一坐标系中作出的图象判断; D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B3、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.4、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.5、A【解析】根据指数函数的图象恒过定点,即求得的图象所过的定点,得到答案【详解】由题意,函数且,令,解得,,的图象过定点故选:A6、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化7、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.8、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.9、B【解析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.10、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C二、填空题:本大题共6小题,每小题5分,共30分。
11、 ①. ②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.12、①②③【解析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【详解】对于①,任取,都有,∴①正确; 对于②,当时,, 根据函数的奇偶性知时,, 且时,,②正确; 对于③,则当时,, 由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且 时,一定有,③正确; 对于④,因为只有一个根, ∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.13、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.14、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案 .【详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤15、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.16、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1)(2)【解析】(1)由三角函数的定义知,,,又,代入即可得到答案;(2)利用公式计算即可.【详解】(1)在单位圆上,且点的横坐标为,则,,.(2)由题知,则则.【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.18、 (1) (0,+∞) (2) [,+∞)【解析】(1)。