文档详情

升流式厌氧污泥床UASB工艺概论

枫**
实名认证
店铺
DOCX
15.24KB
约9页
文档ID:547738536
升流式厌氧污泥床UASB工艺概论_第1页
1/9

升流式厌氧污泥床UASB工艺概论一、引言厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源 能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲 烷气体厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓 度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等厌氧生物处理过程能耗低;有机容积负荷高,一般为5 —10kgCOD/ m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需 求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出 的沼气是一种清洁能源在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今 天,厌氧生物处理显然是能够使污水资源化的优选工艺近年来,污水 厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌 氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨 胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分 迅速而升流式厌氧污泥床 UASB( Up-flow Anaerobic Sludge Bed,注: 以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点, 作为能够将污水中的污染物转化成再生清洁能源一一沼气的一项技术。

对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对 简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重 视,得到广泛的欢迎和应用本文试图就UASB的运行机理和工艺特征以及UASB的设计启动等方 面作一简要阐述二、 UASB的由来1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga) 教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明 了三相分离器使活性污泥停留时间与废水停留时间分离,形成了上流 式厌氧污泥床(UASB)反应器的雏型1974年荷兰CSM公司在其6m3 反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生 物聚体结构,即颗粒污泥(granular sludge)颗粒污泥的出现,不 仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为 第三代厌氧反应器的诞生奠定了基础三、 UASB工作原理UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部 分组成在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝 聚性能的污泥在下部形成污泥层要处理的污水从厌氧污泥床底部流入 与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物, 把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程 中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形 成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到 分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室, 集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的 沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降 沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量 的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出 污泥床基本出要求有:(1) 为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获 得并保持良好的沉淀性能;(2) 良好的污泥床常可形成一种相当稳定的生物相,保持特定的微 生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从 而提高设备内的污泥浓度;(3) 通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区 的污泥层内进一步絮凝和沉淀,然后回流入污泥床内四、UASB内的流态和污泥分布UASB内的流态相当复杂,反应区内的流态与产气量和反应区高度相关, 一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气 量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上 运动。

与此同时,这股气、水流周围的介质则向下运动,造成逆向混合, 这种流态造成水的短流在远离这股上升气、水流的地方容易形成死角 在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混 合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短 流程度有关悬浮层内混合液,由于气体币的运动带动液体以较高速度 上升和下降,形成较强的混合在产气量较少的情况下,有时污泥层与 悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显有 关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合 区三、UASB工作原理UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部 分组成在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝 聚性能的污泥在下部形成污泥层要处理的污水从厌氧污泥床底部流入 与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物, 把它转化为沼气沼气以微小气泡形式不断放出,微小气泡在上升过程 中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形 成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到 分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室, 集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的 沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量 的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出 污泥床基本出要求有:(1) 为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获 得并保持良好的沉淀性能;(2) 良好的污泥床常可形成一种相当稳定的生物相,保持特定的微 生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从 而提高设备内的污泥浓度;(3) 通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区 的污泥层内进一步絮凝和沉淀,然后回流入污泥床内四、UASB内的流态和污泥分布UASB内的流态相当复杂,反应区内的流态与产气量和反应区高度相关, 一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气 量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上 运动与此同时,这股气、水流周围的介质则向下运动,造成逆向混合, 这种流态造成水的短流在远离这股上升气、水流的地方容易形成死角 在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混 合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短 流程度有关悬浮层内混合液,由于气体币的运动带动液体以较高速度 上升和下降,形成较强的混合。

在产气量较少的情况下,有时污泥层与 悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显有 关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合 区六、UASB的设计UASB的工艺设计主要是计算UASB的容积、产气量、剩余污泥量、营养 需求的平衡量UASB的池形状有圆形、方形、矩形污泥床高度一般为3 —8m,多用钢 筋混凝土建造当污水有机物浓度比较高时,需要的沉淀区与反应区的 容积比值小,反应区的面积可采用与沉淀区相同的面积和池形当污水 有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反 应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床 上部面积大于下部的池形气液固三相分离器是UASB的重要组成部分,它对污泥床的正常运行和 获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视 根据经验,三相分离器应满足以下几点要求:1、 混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气 泡进入沉淀区影响沉淀;2、 沉淀器斜壁角度约可大于45度角;3、 沉淀区的表面水力负荷应在0.7m3/m2.h以下,进入沉淀区前, 通过沉淀槽低缝的流速不大于2m/m2.h;4、 处于集气器的液一气界面上的污泥要很好地使之浸没于水中;5、 应防止集气器内产生大量泡沫。

第2、3两个条件可以通过适当选择沉淀器的深度一面积比来加以满足对于低浓度污水,主要用限制表面水力负荷来控制;对于中等浓度和高 浓度污水,在极高负荷下,单位横截面上释放的气体体积可能成为一个 临界指标但是直到现在国内外所取得的成果表明,只要负荷率不超过 20kgCOD/m3.d,UASB高度尚未见到有大于10m的报道,第三代厌氧反应 器除外污泥与液体的分离基于污泥絮凝、沉淀和过滤作用所以在运行操作过 程中,应该尽可能创造污泥能够形成絮凝沉降的水力条件,使污泥具有 良好的絮凝、沉淀性能,不仅对于分离器的工作是具有重要意义,对于 整个有机物去除率更加至关重要特别要注意避免气泡进入沉淀区,要使固一一液进入沉淀区之前就与气 泡很好分离在气一一液表面上形成浮渣能迫使一些气泡进入沉淀区, 所以在设计中必须事先就考虑到:(1) 采用适当的技术措施,尽可能避免浮渣的形成条件,防范浮 渣层的形成;(2) 必须要有冲散浮渣的设施或装置,在污泥反应区一旦出现浮 渣的情况下,能够及时破坏浮渣层的形成,或能够及时排除浮渣如上所述,UASB中污水与污泥的混合是靠上升的水流和发酵过程中产生的气泡来完成的 因此,一般采用多点进水,使进水均匀地分布在床断面上,其中的关键是要均匀一一匀速、 匀量。

UASB容积的计算一般按有机物容积负荷或水力停留时间进行设计时可通过试验决定参数 或参考同类废水的设计和运行参数七、UASB的启动1、污泥的驯化UASB设备启动的难点是获得大量沉降性能良好的厌氧颗粒污泥最好的 办法加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期最 长可长达1-2年实践表明,投加少量的载体,有利于厌氧菌的附着, 促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲 烷活性高的厌氧污泥可缩短启动期2、启动操作要点(1) 最好一次投加足够量的接种污泥;(2) 启动初期从污泥床流出的污泥可以不予回流,以使特别轻的和细 碎污泥跟悬浮物连续地从污泥床排出体外,使较重的活性污泥在床内积 累,并促进其增殖逐步达到颗粒化;(3 )启动开始废水COD浓度较低时,未必就能让污泥颗粒化速度加快;(4) 最初污泥负荷率一般在0.1-0.2kgCOD/kgTSS.d左右比较合适;(5) 污水中原来存在的和厌氧分解出来的多种挥发酸未能有效分解之前,不应随意提高有机容积负荷,这需要跟踪观察和水样化验;(6) 可降解的COD去除率达到70—80%左右时,可以逐步增加有机容 积负荷率;(7) 为促进污泥颗粒化,反应区内的最小空塔速度不可低于1m/d,采 用较高的表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污 泥凝并为大颗粒。

八、UASB工艺的优缺点UASB的主要优点是:1、 UASB内污泥浓度高,平均污泥浓度为20—40gVSS/1;2、 有机负荷高,水力停留时间短,采用中温发酵时,容积负荷一般为1 0kgCOD/m3.d 左右;3、 无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床 上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;4、 污泥床不填载体,节省造价及避免因填料发生堵赛问题;5、 UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥 重新回到污泥床反应区内,通常可以不设污泥回流设备主要缺点是:1、 进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;2、 污泥床内有短流现象,影响处理能力;3、 对水质和负荷突然变化较敏感,耐冲击力稍差九、结语UASB工艺近年来在国内外发展很快,应用面很宽,在各个行业都有应用, 生产性规模不等实践证明,它是污水实现资源化的一种技术成熟可行 的污水处理工艺,既解决了。

下载提示
相似文档
正为您匹配相似的精品文档