八年级数学:一次函数应用题分配方案问题20道(含答案及解析)1.“双11”天猫商城做促销活动,小明用的练习本可以在甲、乙两个商店买到.已知两个商店的标价都是每本1元.甲的优惠条件是:购买10本以上,从第11本开始按标价的六折卖;乙商店的优惠条件是:从第1本开始就按标价的八折卖.(1)当购买数量超过10本时,分别写出甲、乙两商店购买本子的费用y(元)与购买数量x(本)之间的关系式;(2)小明要买15本练习本,到哪个商店购买较省钱?并说明理由.(3)小明现有28元,最多可买多少本练习本?2.互联网时代,外卖行业得到迅速的发展,某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.3.某电信公司通讯有两种收费方式:(A)计时制:0.5元/min;(B)包月制:月租12元,另外通话费按0.2元/min.(1)写出两种方式每月应缴费用y(元)与通话时间x(min)之间的关系式.(2)某用户平均每个月通话时间为60min,他采用哪种方式较合算?为什么?(3)如果该用户本月预缴了100元的话费,按包月制算,该用户本月可通话多长时间?4.某游泳馆面向学生推出暑期优惠活动,活动方案如下:方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设学生小明暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)由图象可得,b=________;(2)求y1和y2的关系式;(3)请问小明选择哪种方案更优惠?5.学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即每套100元.经洽谈协商:A公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费;B公司的优惠条件是:服装按单价打八折,公司承担运费.如果设参加演出的学生有x人.(1)写出:①学校购买A公司服装所付的总费用y1(元)与参演学生人数x之间的函数关系式;②学校购买B公司服装所付的总费用y2(元)与参演学生人数x之间的函数关系式.(2)若参演学生人数为150人,选择哪个公司比较合算,请说明理由.6.大坪山合作社向外地运送一批李子由铁路运输每千克需运费元;由公路运输,每千克需运费元,运完这批李子还需其他费用元.(1)该合作社运输的这批李子为,选择铁路运输时,所需费用为元,选择公路运输时,所需费用为元.请分别写出,与之间的关系式.(2)若合作社只支出运费元,则选用哪种运输方式运送的李子重量多?7.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来8.现从A、B两个蔬菜市场向甲乙两地运送蔬菜,A、B两个蔬菜市场各有14吨蔬菜,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨.从A运到甲地运费需要每吨50元,从A地到乙地需要每吨30元;从B地运到甲地需要每吨60元,从B地到乙地需要每吨45元.(1)设A向甲地运送蔬菜x吨,请完成下表:运往甲地的蔬菜质量(吨)运往乙地的蔬菜质量(吨)AxB(2)设总运费W元,请用含x的式子表示W9.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10至25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?10.某公司40名员工到一景点集体参观,该景点规定满40人可以购买团体票,票价打八折.这天恰逢妇女节,该景点做活动,女士票价打五折,但不能同时享受两种优惠.请你帮助他们选择购票方案.11.上海“迪士尼”于今年“”开园,准备在暑假期间推出学生门票优惠价如下:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)300400450我市某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的A种票x张,B种票数是A种票数的3倍少10张,C种票y张.(1)请求出y与x之间的函数关系式;(2)设购票总费用为w元,求w(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买的每种票至少购买20张,则有几种购票方案?并指出哪种方案费用最少?12.东东在完成一项“社会调查”作业时,调查了城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入基本工资(固定)+计单奖金”的方法计算薪资,并获得如下信息:营业员小李小杨月送餐单数/单285260月总收入/元33703320送餐每单奖金为a元,送餐员月基本工资为b元.(1)求a、b的值;(2)若月送餐单数超过300单时,超过部分每单奖金增加1元,假设月送餐单数为x单,月总收入为y元,请写出y与x之间的函数关系式,并求出送餐员小李计划月总收入不低于4000元时,小李每月至少要送餐多少单?13.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动、每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量(人/辆)4530租金(元/辆)400280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案分析:(1)可以从乘车人数的角度考虑租多少辆汽车,要注意到以下要求:①要保证210名师生都有车坐;②要使每辆汽车上至少要有1名教师.根据①可知,汽车总数不能小于______;根据②可知,汽车总数不能大于______.综合起来可知汽车总数为______.(2)租车费用与所租车的种类有关.可以看出,当汽车总数a确定后,在满足各项要求的前提下.尽可能少地租用甲种客车可以节省费用.设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即.将(1)中确定的a的值代入上式,化简这个函数,得_________.为使240名师生有车坐,x不能小于________;为使租车费用不超过2300元,x不能超过________.综合起来可知x的取值为________.在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中哪个方案?试说明理由.14.为巩固“脱贫攻坚”成果,某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为元/千克,经市场调查发现,今年五一期间草莓的销售量(千克)与销售单价(元/千克)成一次函数关系,下表列出了与的一些对应值:(1)根据表中信息,求与的函数关系式;(2)若五一期间销售草莓获取的利润为(元),请写出与之间函数表达式,并求出销售单价为多少时,获得的利润最大?最大利润是多少?(利润销售额成本)15.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶,应付给个体车主的月租费是元,付给出租车公司的月租费是元,,分别与之间的函数关系图象是如图的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为km,那么这个单位租哪家的车合算?16.某市A、B两个仓库分别有救灾物资200吨和300吨,2021年5月18日起,云南大理州漾濞县已连续发生多次地震,最高震级为5月21日发生的6.4级地震,为援助灾区,现需将这些物资全部运往甲,乙两个受灾村.已知甲村需救灾物资240吨,乙村需救灾物资260吨,从A仓库运往甲,乙两村的费用分别为每吨20元和每吨25元,从B仓库运往甲,乙两村的费用分别为每吨15元和24元.设A仓库运往甲村救灾物资吨,请解答下列问题:(1)根据题意,填写下列表格:仓库甲村(吨)乙村(吨)A①B②③①=______;②=______;③=______.(2)设总运费为(元),求出(元)与(吨)的函数关系式.(3)求怎么调运可使总运费最少?最少运费为多少元?17.A、B两个蔬菜基地要向C、D两城市运送蔬菜,已知A基地有蔬菜200吨,B基地有蔬菜300吨,C城需要蔬菜240吨,D城需要蔬菜260吨,又知从A基地运往C、D两处的费用分别为每吨20元和每吨25元,从B基地运往C、D两处的费用分别为每吨15元和每吨18元,设从B基地运往C处的蔬菜为x吨,A、B两个蔬菜基地的总运费为w元.(1)求w与x之间的函数关系式,并写出x的取值范围;(2)求总运费最小时的调运方案及此时的总运费;(3)如果从B基地运往C城的运费每吨减少m元,其余线路的运费不变,请根据m的值讨论并写出总运费最小时的调运方案.18.如图,、分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?19.某学校计划购、两种树苗共株用来绿化校园,种树苗每株元,种树苗每株元,经调查了解,、两种树苗的成活率分别是和.(1)若购买这两种树苗共用去元,则、两种树苗各购买多少株?(2)为确保这批树苗的总成活率不低于,则种树苗最多购买多少株?(3)在(2)的条件下,应如何购买树苗,使购买树苗的费用最低?并求出最低费用.20.在2021年春季环境整治活动中,红旗社区计划对面积为1600m2的区域进行绿化.经投标由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务.已知甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,请问应该如何安排甲、乙两队施工的天数,使施工总费用最低?最低费用是多少?。