文档详情

山东省泰安市泰安实验中学2024届高三年级第二学期期末练习试卷

城***
实名认证
店铺
DOC
1.93MB
约20页
文档ID:376599816
山东省泰安市泰安实验中学2024届高三年级第二学期期末练习试卷_第1页
1/20

山东省泰安市泰安实验中学2024届高三年级第二学期期末练习试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设函数,则函数的图像可能为( )A. B. C. D.2.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( )A. B. C. D.3.已知函数,若有2个零点,则实数的取值范围为( )A. B. C. D.4.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )A.36种 B.44种 C.48种 D.54种5.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )A. B. C. D.6.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )A. B. C. D.7.下列与函数定义域和单调性都相同的函数是( )A. B. C. D.8.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )A. B. C. D.9.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A.1 B. C. D.010.设等差数列的前项和为,若,则( )A.23 B.25 C.28 D.2911.设等比数列的前项和为,则“”是“”的( )A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要12.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A.6500元 B.7000元 C.7500元 D.8000元二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.14.已知,,,则的最小值是__.15.已知中,点是边的中点,的面积为,则线段的取值范围是__________.16.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.18.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.19.(12分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.20.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.21.(12分)若关于的方程的两根都大于2,求实数的取值范围.22.(10分)已知多面体中,、均垂直于平面,,,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解题分析】根据函数为偶函数排除,再计算排除得到答案.【题目详解】定义域为: ,函数为偶函数,排除 ,排除 故选【题目点拨】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.2.B【解题分析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【题目点拨】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.3.C【解题分析】令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【题目详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【题目点拨】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.4.B【解题分析】分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【题目详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有; 如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【题目点拨】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.5.C【解题分析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【题目点拨】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.6.B【解题分析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.7.C【解题分析】分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【题目详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【题目点拨】本小题主要考查函数的定义域和单调性,属于基础题.8.D【解题分析】由试验结果知对0~1之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值.【题目详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:.【题目点拨】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9.B【解题分析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.【题目详解】由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【题目点拨】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.10.D【解题分析】由可求,再求公差,再求解即可.【题目详解】解:是等差数列,又,公差为,,故选:D【题目点拨】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.11.A【解题分析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【题目详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【题目点拨】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.12.D【解题分析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【题目详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【题目点拨】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

13.1【解题分析】根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.【题目详解】∵向量与的夹角为,||=||=1,且;∴;∴λ=1.故答案为:1.【题目点拨】考查向量数量积的运算及计算公式,以及向量垂直的充要条件.14..【解题分析】因为,展开后利用基本不等式,即可得到本题答案.【题目详解】由,得,所以,当且仅当,取等号.故答案为:【题目点拨】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.15.【解题分析】设,利用正弦定理,根据,得到①,再利用余弦定理得②,①②平方相加得:,转化为 有解问题求解.【题目详解】设,所以, 即①由余弦定理得,即 ②,①②平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【题目点拨】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.16.【解题分析】先表示出渐近线,再代入点,求出,则离心率易求.【。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档