文档详情

聚类分析中的距离度量.ppt

m****
实名认证
店铺
PPT
360.31KB
约28页
文档ID:576617570
聚类分析中的距离度量.ppt_第1页
1/28

聚类分析中的距离度量 •在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否•本次报告的目的就是对常用的相似性度量作一个总结 目录•1. 欧氏距离•2. 曼哈顿距离•3. 切比雪夫距离•4. 明可夫斯基距离•5. 标准化欧氏距离•6. 马氏距离•7. 夹角余弦•8. 汉明距离•9. 杰卡德系数& 杰卡德相似距离•10. 相关系数& 相关距离•11. 信息熵 欧氏距离(EuclideanDistance)• 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式•(1)二维平面上两点a(xi,yi)与b(xj,yj)间的欧氏距离:• (2)三维空间两点a(xi,yi,zi)与b(xj,yj,zj)间的欧氏距离: 欧氏距离(续)•两个n维向量a(xi1,xi2,…,xin)与 b(xj1,xj2,…,xjn)间的欧氏距离:•也可以用表示成向量运算的形式: Matlab计算欧氏距离•Matlab计算距离主要使用pdist函数。

若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离•例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离X= [0 0 ; 1 0 ; 0 2]D= pdist(X,'euclidean')结果:D= 1.0000 2.0000 2.2361 曼哈顿距离(ManhattanDistance)•想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼实际驾驶距离就是这个“曼哈顿距离”而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(CityBlock distance)•(1)二维平面两点a(xi,yi)与b(xj,yj)间的曼哈顿距离•两个n维向量a(xi1,xi2,…,xin)与b(xj1,xj2,…,xjn)间的曼哈顿距离 Matlab计算曼哈顿距离•例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离X= [0 0 ; 1 0 ; 0 2]D= pdist(X, 'cityblock')结果:D= 1 2 3 切比雪夫距离 ( Chebyshev Distance ) • 国际象棋中国王走一步能够移动到相邻的8个方格中的任意一个。

那么国王从格子a(xi,yi)走到格子b(xj,yj)最少需要多少步?自己走走试试你会发现最少步数总是max(| xj-xi | , | yj-yi | ) 步有一种类似的一种距离度量方法叫切比雪夫距离•(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离 切比雪夫距离 ( 续 ) •(2)两个n维向量a(xi1,xi2,…,xin)与 b(xj1,xj2,…,xjn)之间的切比雪夫距离•这个公式的另一种等价形式是可以用放缩法和夹逼法则来证明此式 Matlab计算切比雪夫距离例子:计算向量(0,0)、(1,0)、(0,2)两两间的切比雪夫距离X= [0 0 ; 1 0 ; 0 2]D= pdist(X, 'chebychev')结果:D= 1 2 2 明可夫斯基距离(Minkowski Distance)•明氏距离不是一种距离,而是一组距离的定义1)明氏距离的定义 两个n维变量a(xi1,xi2,…,xin)与 b(xj1,xj2,…,xjn)之间的明可夫斯基距离定义为:其中p是一个变参数当p=1时,就是曼哈顿距离当p=2时,就是欧氏距离当p→∞时,就是切比雪夫距离根据变参数的不同,明氏距离可以表示一类的距离。

•(2)明氏距离的缺点 明氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)那么a与b之间的明氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的明氏距离,但是身高的10cm真的等价于体重的10kg么?因此用明氏距离来衡量这些样本间的相似度很有问题 简单说来,明氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了2)没有考虑各个分量的分布(期望,方差等)可能是不同的 Matlab计算明氏距离•例子:计算向量(0,0)、(1,0)、(0,2)两两间的明氏距离(以变参数为2的欧氏距离为例)X= [0 0 ; 1 0 ; 0 2]D= pdist(X,'minkowski',2)结果:D= 1.0000 2.0000 2.2361 标准化欧氏距离(Standardized Euclidean distance )•￿￿标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。

标准欧氏距离的思路:既然数据各维分量的分布不一样,那就先将各个分量都“标准化”到均值、方差相等吧均值和方差标准化到多少呢?根据统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:X*• 而且标准化变量的数学期望为0,方差为1因此样本集的标准化过程(standardization)用公式描述就是:•标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差 标准化欧氏距离(续)•  经过简单的推导就可以得到两个n维向量a(xi1,xi2,…,xin)与 b(xj1,xj2,…,xjn)之间的标准化欧氏距离的公式:•如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(WeightedEuclidean distance)2)Matlab计算标准化欧氏距离例子:计算向量(0,0)、(1,0)、(0,2)两两间的标准化欧氏距离 (假设两个分量的标准差分别为0.5和1)X= [0 0 ; 1 0 ; 0 2]D= pdist(X, 'seuclidean',[0.5,1])结果:D= 2.0000 2.0000 2.8284 马氏距离(Mahalanobis Distance)(1)马氏距离定义 有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:而其中向量Xi与Xj之间的马氏距离定义为: 若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了: 也就是欧氏距离了。

 协方差矩阵是对角矩阵,公式变成了标准化欧氏距离 (2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰3)Matlab计算(1 2),( 1 3),( 2 2),( 3 1)两两之间的马氏距离X = [1 2; 1 3; 2 2; 3 1]Y = pdist(X,'mahalanobis')结果:Y= 2.3452 2.0000 2.3452 1.2247 2.4495 1.2247 夹角余弦(Cosine)几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异1)在二维空间中向量a(xi,yi)与向量b(xj,yj)的夹角余弦公式:(2)对于两个n维样本点a(xi1,xi2,…,xin)与 b(xj1,xj2,…,xjn),可以使用类似于夹角余弦的概念来衡量它们间的相似程度 即 夹角余弦(续)夹角余弦取值范围为[-1,1]夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

3)Matlab计算夹角余弦例子:计算(1,0)、( 1,1.732)、(-1,0)两两间的夹角余弦X= [1 0 ; 1 1.732 ; -1 0] % Matlab中的pdist(X,'cosine')得到的是1减夹角余弦的值D= 1- pdist(X, 'cosine') 结果:D= 0.5000 -1.0000 -0.5000 汉明距离(Hamming Distance)(1)汉明距离的定义 两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数例如字符串“1111”与“1001”之间的汉明距离为2 应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)2)Matlab计算汉明距离  Matlab中2个向量之间的汉明距离的定义为2个向量不同的分量所占的百分比 例子:计算向量(0,0)、(1,0)、(0,2)两两间的汉明距离X = [0 0 ; 1 0 ; 0 2];D = PDIST(X, 'hamming')结果:D= 0.5000 0.5000 1.0000 杰卡德相似系数(Jaccardsimilarity coefficient)(1) 杰卡德相似系数 两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标2) 杰卡德距离 与杰卡德相似系数相反的概念是杰卡德距离(Jaccarddistance)杰卡德距离可用如下公式表示:  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度 杰卡德相似系数(续)(3)杰卡德相似系数与杰卡德距离的应用 可将杰卡德相似系数用在衡量样本的相似度上  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1例如:A(0111)和B(1011)我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素M11:样本A与B都是1的维度的个数M10:样本A是1,样本B是0的维度的个数M01:样本A是0,样本B是1的维度的个数M00:样本A与B都是0的维度的个数那么样本A与B的杰卡德相似系数可以表示为:这里M11+M10+M01可理解为A与B的并集的元素个数,而M11是A与B的交集的元素个数而样本A与B的杰卡德距离表示为: Matlab计算杰卡德距离Matlab的pdist函数定义的杰卡德距离跟前面的定义有一些差别,Matlab中将其定义为不同的维度的个数占“非全零维度”的比例。

例子:计算(1,1,0)、(1,-1,0)、(-1,1,0)两两之间的杰卡德距离X= [1 1 0; 1 -1 0; -1 1 0]D= pdist( X , 'jaccard')结果D=0.5000 0.5000 1.0000 相关系数( Correlation coefficient ) 与相关距离(Correlation distance)(1)相关系数的定义相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]相关系数的绝对值越大,则表明X与Y相关度越高当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)2)相关距离的定义 (3)Matlab计算(1, 2 ,3 ,4 )与( 3 ,8 ,7 ,6 )之间的相关系数与相关距离X = [1 2 3 4 ; 3 8 7 6]C = corrcoef( X' ) %将返回相关系数矩阵D = pdist( X , 'correlation')结果:C= 1.0000 0.4781 0.4781 1.0000D=0.5219 其中0.4781就是相关系数,0.5219是相关距离。

信息熵(Information Entropy)信息熵并不属于一种相似性度量信息熵是衡量分布的混乱程度或分散程度的一种度量分布越分散(或者说分布越平均),信息熵就越大分布越有序(或者说分布越集中),信息熵就越小 计算给定的样本集X的信息熵的公式:参数的含义:n:样本集X的分类数pi:X中第i类元素出现的概率 信息熵越大表明样本集S分类越分散,信息熵越小则表明样本集X分类越集中当S中n个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)当X只有一个分类时,信息熵取最小值0 The￿End. 。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档