试题和答案汇编collection of questions and answers20XX试题练习·答案解析 高等数学第六版上册课后习题答案 第一章 习题1-1 1. 设A=(-¥, -5)È(5, +¥), B=[-10, 3), 写出AÈB, AÇB, A\B及A\(A\B)的表达式. 解 AÈB=(-¥, 3)È(5, +¥), AÇB=[-10, -5), A\B=(-¥, -10)È(5, +¥), A\(A\B)=[-10, -5). 2. 设A、B是任意两个集合, 证明对偶律: (AÇB)C=AC ÈBC . 证明 因为 xÎ(AÇB)CÛxÏAÇBÛ xÏA或xÏBÛ xÎAC或xÎBC Û xÎAC ÈBC, 所以 (AÇB)C=AC ÈBC . 3. 设映射f : X ®Y, AÌX, BÌX . 证明 (1)f(AÈB)=f(A)Èf(B); (2)f(AÇB)Ìf(A)Çf(B). 证明 因为 yÎf(AÈB)Û$xÎAÈB, 使f(x)=y Û(因为xÎA或xÎB) yÎf(A)或yÎf(B) Û yÎf(A)Èf(B), 所以 f(AÈB)=f(A)Èf(B). (2)因为 yÎf(AÇB)Þ$xÎAÇB, 使f(x)=yÛ(因为xÎA且xÎB) yÎf(A)且yÎf(B)Þ yÎ f(A)Çf(B),所以 f(AÇB)Ìf(A)Çf(B). 4. 设映射f : X®Y, 若存在一个映射g: Y®X, 使, , 其中IX、IY分别是X、Y上的恒等映射, 即对于每一个xÎX, 有IX x=x; 对于每一个yÎY, 有IY y=y. 证明: f是双射, 且g是f的逆映射: g=f -1. 证明 因为对于任意的yÎY, 有x=g(y)ÎX, 且f(x)=f[g(y)]=Iy y=y, 即Y中任意元素都是X中某元素的像, 所以f为X到Y的满射. 又因为对于任意的x1¹x2, 必有f(x1)¹f(x2), 否则若f(x1)=f(x2)Þg[ f(x1)]=g[f(x2)] Þ x1=x2. 因此f既是单射, 又是满射, 即f是双射. 对于映射g: Y®X, 因为对每个yÎY, 有g(y)=xÎX, 且满足f(x)=f[g(y)]=Iy y=y, 按逆映射的定义, g是f的逆映射. 5. 设映射f : X®Y, AÌX . 证明: (1)f -1(f(A))ÉA; (2)当f是单射时, 有f -1(f(A))=A . 证明 (1)因为xÎA Þ f(x)=yÎf(A) Þ f -1(y)=xÎf -1(f(A)), 所以 f -1(f(A))ÉA. (2)由(1)知f -1(f(A))ÉA. 另一方面, 对于任意的xÎf -1(f(A))Þ存在yÎf(A), 使f -1(y)=xÞf(x)=y . 因为yÎf(A)且f是单射, 所以xÎA. 这就证明了f -1(f(A))ÌA. 因此f -1(f(A))=A . 6. 求下列函数的自然定义域: (1); 解 由3x+2³0得. 函数的定义域为. (2); 解 由1-x2¹0得x¹±1. 函数的定义域为(-¥, -1)È(-1, 1)È(1, +¥). (3); 解 由x¹0且1-x2³0得函数的定义域D=[-1, 0)È(0, 1]. (4); 解 由4-x2>0得 |x|<2. 函数的定义域为(-2, 2). (5); 解 由x³0得函数的定义D=[0, +¥). (6) y=tan(x+1); 解 由(k=0, ±1, ±2, × × ×)得函数的定义域为(k=0, ±1, ±2, × × ×). (7) y=arcsin(x-3); 解 由|x-3|£1得函数的定义域D=[2, 4]. (8); 解 由3-x³0且x¹0得函数的定义域D=(-¥, 0)È(0, 3). (9) y=ln(x+1); 解 由x+1>0得函数的定义域D=(-1, +¥). (10). 解 由x¹0得函数的定义域D=(-¥, 0)È(0, +¥). 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么? (1)f(x)=lg x2, g(x)=2lg x; (2) f(x)=x, g(x)=; (3),. (4)f(x)=1, g(x)=sec2x-tan2x . 解 (1)不同. 因为定义域不同. (2)不同. 因为对应法则不同, x<0时, g(x)=-x. (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同. 8. 设, 求, , , j(-2), 并作出函数y=j(x)的图形. 解 , , , . 9. 试证下列函数在指定区间内的单调性: (1), (-¥, 1); (2)y=x+ln x, (0, +¥). 证明 (1)对于任意的x1, x2Î(-¥, 1), 有1-x1>0, 1-x2>0. 因为当x1-x2. 因为f(x)在(0, l)内单调增加且为奇函数, 所以f(-x2)f(x1), 这就证明了对于"x1, x2Î(-l, 0), 有f(x1)< f(x2), 所以f(x)在(-l, 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数; (2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数. 证明 (1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则 F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x), 所以F(x)为偶函数, 即两个偶函数的和是偶函数. 如果f(x)和g(x)都是奇函数, 则 F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x), 所以F(x)为奇函数, 即两个奇函数的和是奇函数. (2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则 F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x), 所以F(x)为偶函数, 即两个偶函数的积是偶函数. 如果f(x)和g(x)都是奇函数, 则 F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x), 所以F(x)为偶函数, 即两个奇函数的积是偶函数. 如果f(x)是偶函数, 而g(x)是奇函数, 则 F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数. 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y=x2(1-x2); (2)y=3x2-x3; (3); (4)y=x(x-1)(x+1); (5)y=sin x-cos x+1; (6). 解 (1)因为f(-x)=(-x)2[1-(-x)2]=x2(1-x2)=f(x), 所以f(x)是偶函数. (2)由f(-x)=3(-x)2-(-x)3=3x2+x3可见f(x)既非奇函数又非偶函数. (3)因为, 所以f(x)是偶函数. (4)因为f(-x)=(-x)(-x-1)(-x+1)=-x(x+1)(x-1)=-f(x), 所以f(x)是奇函数. (5)由f(-x)=sin(-x)-cos(-x)+1=-sin x-cos x+1可见f(x)既非奇函数又非偶函数. (6)因为, 所以f(x)是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y=cos(x-2); 解 是周期函数, 周期为l=2p. (2)y=cos 4x; 解 是周期函数, 周期为. (3)y=1+sin px; 解 是周期函数, 周期为l=2. (4)y=xcos x; 解 不是周期函数. (5)y=sin2x. 解 是周期函数, 周期为l=p. 14. 求下列函数的反函数: (1); 解 由得x=y3-1, 所以的反函数为y=x3-1. (2); 解 由得, 所以的反函数为. (3)(ad-bc¹0); 解 由得, 所以的反函数为. (4) y=2sin3x; 解 由y=2sin 3x得, 所以y=2sin3x的反函数为. (5) y=1+ln(x+2); 解 由y=1+ln(x+2)得x=ey-1-2, 所以y=1+ln(x+2)的反函数为y=ex-1-2. (6). 解 由得, 所以的反函数为. 15. 设函数f(x)在数集X上有定义, 试证: 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界. 证明 先证必要性. 设函数f(x)在X上有界, 则存在正数M, 使|f(x)|£M, 即-M£f(x)£M. 这就证明了f(x)在X上有下界-M和上界M. 再证充分性. 设函数f(x)在X上有下界K1和上界K2, 即K1£f(x)£ K2 . 取M=max{|K1|, |K2|}, 则 -M£ K1£f(x)£ K2£M , 即 |f(x)|£M. 这就证明了f(x)在X上有界. 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x1和x2的函数值: (1) y=u2, u=sin x, , ; 解 y=sin2x。