锂离子电池材料常用表征技术在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和 器件进行数据分析,以得知其各方面的性能目前,锂离子电池材料和器件常用到的研 究方法主要有表征方法和电化学测量电化学测试主要分为三个部分:(1)充放电测试,主要看电池充放电性能和倍率 等;(2)循环伏安,主要是看电池的充放电可逆性,峰电流,起峰位;(3)EIS交流 阻抗,看电池的电阻和极化等1、成分表征(1 )电感耦合等离子体(ICP)用来分析物质的组成元素及各种元素的含量ICP-AES可以很好地满足实验室主、 次、痕量元素常规分析的需要;ICP-MS相比ICP-AES是近些年新发展的技术,仪器价 格更贵,检出限更低,主要用于痕量/超痕量分析Aurbac等在研究正极材料与电解液的界面问题时,用ICP研究Li%和LiF吧在电 解液中的溶解性通过改变温度、电解液的锂盐种类等参数,用ICP测量改变参数时电 解液中的Co和Fe含量的变化,从而找到减小正极材料在电解液中溶解的关键⑴值得 注意的是,若元素含量较高(例如高于 20%),使用ICP检测时误差会大,此时应采用 其他方式2) 二次离子质谱(SIMS)通过发射热电子电离氩气或氧气等离子体轰击样品的表面,探测样品表面溢出的荷 电离子或离子团来表征样品成分。
可以对同位素分布进行成像,表征样品成分;探测样 品成分的纵向分布Ota等用TOF—SIMS 技术研究了亚硫酸乙烯酯作为添加剂加到标准电解液后,石墨 负极和LiCO正极表面形成 SEI膜的成分⑵Castle等通过SIMS探测V0在嵌锂后电极0 2 2 5表面到部Li+的分布来研究Li+在吧中的扩散过程[3]3) X射线光子能谱(XPS)由瑞典Uppsala大学物理研究所 Kai Siegbahn教授及其小组在20世纪五六十年代逐 步发展完善X射线光电子能谱不仅能测定表面的组成元素,而且还能给出各元素的化 学状态信息,能量分辨率高,具有一定的空间分辨率(目前为微米尺度)、时间分辨率 (分钟级)用于测定表面的组成元素、给出各元素的化学状态信息胡勇胜等用XPS研究了在高电压下VEC在石墨表面生成的SEI的成分,主要还是以 C、O、Li为主,联合FTIR发现其中主要成分为烷氧基锂盐⑷4) 电子能量损失谱(EELS)利用入射电子引起材料表面电子激发、电离等非弹性散射损失的能量,通过分析能 量损失的位置可以得到元素的成分EELS相比EDX对轻元素有更好的分辨效果,能量 分辨率高出1~2个量级,空间分辨能力由于伴随着透射电镜技术,也可以达到10 10 m 的量级,同时可以用于测试薄膜厚度,有一定时间分辨能力。
通过对EELS谱进行密度 泛函(DFT )的拟合,可以进一步获得准确的元素价态甚至是电子态的信息AL Sharab等在研究氟化铁和碳的纳米复合物电极材料时利用STEM—EELS联合技 术研究了不同充放电状态时氟化铁和碳的纳米复合物的化学元素分布、结构分布及铁的 价态分布⑸5) 扫描透射X射线显微术(STXM)基于第三代同步辐射光源以及高功率实验室X光源、X射线聚焦技术的新型谱学显 微技术采用透射X射线吸收成像的原理,STXM能够实现具有几十个纳米的高空间分 辨的三维成像,同时能提供一定的化学信息°STXM能够实现无损伤三维成像,对于了 解复杂电极材料、固体电解质材料、隔膜材料、电极以及电池可以提供关键的信息,而 且这些技术可以实现原位测试的功能Sun等研究碳包覆的Li TiO与未包覆之前相比,具有更好的倍率性能和循环性能4 5 12作者利用STXM—XANES和高分辨的TEM确定了无定型的碳层均一地包覆在LTO颗粒表 面,包覆厚度约为5 nm其过STX M作者获得了单个LTO颗粒的C、Ti、0分布情况, 其中C包覆在颗粒表面⑹6) X射线吸收近边谱(XANES )是标定元素及其价态的技术,不同化合物中同一价态的同一元素对特定能量 X 射线 有高的吸收,我们称之为近边吸收谱。
在锂电池领域中,XAS主要用于电荷转移研究, 如正极材料过渡金属变价问题Kobayashi等用XANES研究了 LiNi Co Al 0正极材料XANES检测到颗粒表面含0.80 0.15 0.05 2有Li Co和其它额外立方相杂质⑺2 3(7) X射线荧光光谱分析( XRF )利用初级X射线光子或其它微观离子激发待测物质中的原子,使之产生荧光(次级 X射线)而进行物质成分分析和化学态研究的方法按激发、色散和探测方法的不同, 分为X射线光谱法(波长色散)和X射线能谱法(能量色散)根据色散方式不同, X 射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色 散)XRF被工业界广泛应用于锂离子电池材料主成分及杂质元素分析对某些元素检 出限可以达到10-9的量级2、形貌表征(1) 扫描电镜(SEM)收集样品表面的二次电子信息,反应样品的表面形貌和粗糙程度,带有EDS配件的 SEM可以进一步分析元素种类、分布以及半定量的分析元素含量虽然SEM的分辨率 远小于 TEM,但它仍是表征电池材料的颗粒大小和表面形貌的最基本的工具文俊等利用密封转移盒转移样品的基础上,重新设计了针对金属锂电极的扫描电镜 的样品托架,研究了金属锂电极在Li的嵌入和脱出过程中表面孔洞和枝晶的形成过程 ⑹。
2) 透射电镜(TEM)材料的表面和界面的形貌和特性,在关于表面包覆以及阐述表面SEI的文献中多有 介绍TEM也可以配置能谱附件来分析元素的种类、分布等与SEM相比TEM能观察 到更小的颗粒,并且高分辨透射电镜可以对晶格进行观察,原位TEM的功能更加强大, 在TEM电镜腔体中组装原位电池,同时借助于 TE M的高分辨特性,对电池材料在循环 过程中的形貌和结构演化进行实时的测量和分析黄建宇等利用原位样品杆对SnO2在离子液体中嵌脱锂过程中的形貌和结构演化进 行了原位表征随后,他们对TE M原位电池实验的装置进行了改进,利用在金属Li上 自然生产的氧化锂作为电解质,代替了原先使用的离子液体,提高了实验的稳定性,更 好地保护了电镜腔体[9,10]3) 原子力显微镜(AFM)纳米级平整表面的观察,在碳材料的表征中使用较多3、晶体结构表征(1 )X射线衍射技术(XRD)通过XRD,可以获得材料的晶体结构、结晶度、应力、结晶取向、超结构等信息, 还可以反映块体材料平均晶体结构性质,平均的晶胞结构参数变化,拟合后可以获取原 子占位信息Thurston等首次将原位的XRD技术应用到锂离子电池中通过利用同步辐射光源的 硬X射线探测原位电池装置中的体电极材料,直观的观察到晶格膨胀和收缩、相变、多 相形成的结果。
2) 扩展X射线吸收精细谱(EXAFS)通过X射线与样品的电子相互作用,吸收部分特定能量的入射光子,来反映材料 局部结构差异与变化的技术,具有一定的能量和时间分辨能力,主要获得晶体结构中径 向分布、键长、有序度、配位数等信息;通常需要同步辐射光源的强光源来实现EXAFS 实验Jung等通过用EXAFS分析研究了嵌SnO /CuO的碳纳米负极材料的电化学性质,x x表明嵌SnO /CuO的碳纳米纤维具有一个无序的结构,形成了 SnO颗粒的特殊分布,XX x由此导致电化学性能有所提升[12]3) 中子衍射(ND)当锂离子电池材料中有较大的原子存在时,X射线将难以对锂离子占位进行精确的 探测中子对锂离子电池材料中的锂较敏感,因此中子衍射在锂离子电池材料的研究中 发挥着重要作用Arbi等通过中子衍射确定了锂离子电池固态电解质材料LATP中的Li+占位[13]4) 核磁共振(NMR )NMR具有高的能量分辨、空间分辨能力,能够探测材料中的化学信息并成像,探测 枝晶反应、测定锂离子自扩散系数、对颗粒部相转变反应进行研究Grey等对NMR在锂离子电池正极材料中的研究开展了大量的研究工作表明从正 极材料的NMR谱中可以得到丰富的化学信息及局部电荷有序无序等信息,并可以探测 顺磁或金属态的材料,还可以探测掺杂带来的电子结构的微弱变化来反映元素化合态信 息。
另外结合同位素示踪还可以研究电池中的副反应等[14]5) 球差校正扫描透射电镜(STEM )用途:用来观察原子的排布情况、原子级实空间成像,可清晰看到晶格与原子占位; 对样品要求高;可以实现原位实验Oshima等利用环形明场成像的球差校正扫描透射显微镜(ABF-STEM)观察到了 Li VO2 4中Li、V、O在实空间的原子排布[15]6) Raman早期用拉曼光谱研究LiCO的晶体结构,LiCO中有两种拉曼活性模式,Co—O伸缩0 2 0 2振动Alg的峰与O—Co—O的弯曲振动Eg的峰[16]也多用于锂离子电池中碳材料石墨 化程度的表征分析4、官能团的表征官能团又称官能基、功能团,是决定有机化合物化学性质的原子和原子团常见官 能团有烃基、含卤素取代基、含氧官能基、含氮官能基以及含磷、硫官能团5种1) 拉曼光谱(RS)由印度物理学家拉曼在单色光照射液体苯后散射出的与入射光频率不同谱线的实 验中发现的,从拉曼光谱可以得到分子振动和转动的信息拉曼光谱适用于对称结构极 性较小的分子,例如对于全对称振动模式的分子,在激发光子的作用下,会发生分子极 化,产生拉曼活性,而且活性很强在锂离子电池电极材料表征时,由于拆卸和转移过程难免人为或气氛原因对电极材 料造成干扰,因此原位技术与拉曼光谱一起用在了电极材料的表征上。
拉曼光谱对于材 料结构对称性、配位与氧化态非常敏感,可用于测量过渡金属氧化物对于拉曼光谱的灵敏度不够的情况,可以使用一些Au和Ag等金属在样品表面进行 处理,由于在这些特殊金属的导体表面或溶胶靠近样品表面电磁场的增强导致吸附分子 的拉曼光谱信号增强,称之为表面增强拉曼散射(SERS)Peng等利用SERS的手段证实了锂空电池充放电过程中确实存在着中间产物LiO,2而在充电过程中LiO并没有观测到,说明了锂空电池的放电过程是一个两步反应过程,2以LiO作为中间产物,而充电过程是不对称的一步反应,Li O的直接分解,由于LiO2 2 2 2 2 导电性差分解困难,这也是导致充电极化大于放电极化的原因[17]2) 傅里叶变换红外光谱(FT-IS)红外光谱使用的波段与拉曼类似,不少拉曼活性较弱的分子可以使用红外光谱进行 表征,红外光谱也可作为拉曼光谱的补充,红外光谱也称作分子振动光谱,属于分子吸 收光谱依照红外光区波长的不同可以将红外光区分为三个区域:①近红外区,即泛频区, 指的是波数在4000 cm-1以上的区域,主要测量O—H、C—H、N—H键的倍频吸收;② 中红外区,即基本振动区,波数围在400 - 4000 cm-i,也是研究和应用最多的区域,主 要测量分子振动和伴随振动;③远红外区,即分子振动区,指的是波数在400 cm-i以下 的区域,测量的主要是分子的转动信息。
由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外 光谱,通常红外光谱的样品需要研磨制成KBr的压片通常红外光谱的数据需要进行傅里叶变换处理,因此红外光谱仪和傅里叶变化处理 器联合使用,称为傅里叶红外光谱(FITR)在锂离子电池电解液的研究中,使用红外 光谱手段的工作较多Mozhzhukhina等利用红外光谱对锂空电池电解液常用的溶剂二甲基亚砜DMS0的稳 定性进行了研究,发现DMS0在锂空电池中无法稳定主要是由于超氧根离子(02-)的进攻, 而在红外光谱中观测到SO的信号存在,这个反应难以避免,即使。