文档详情

第五章相交线与平行线全章知识点归纳及典型题目练习

夏**
实名认证
店铺
DOC
1.03MB
约16页
文档ID:465421406
第五章相交线与平行线全章知识点归纳及典型题目练习_第1页
1/16

第五章 相交线与平行线本章总结本章主要讲述的知识点有相交线与平行线其中相交线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念相交的一种特殊情况是垂直,两条直线交角成90经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短两条直线的另外一种关系是平行,平行就是指两条直线永不相交平行线之间的距离处处相等过直线外一点,作已知直线的平行线,有且只有一条当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。

平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足1=2(或者3=4;5=7;6=8),就可以说AB//CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足6=2(或者5=4),就可以说AB//CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2=180(或者6+4=180),就可以说AB//CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1=2=90就可以得到平行线判定定理5:两条直线同时平行于第三条直线,两条直线平行知 识 点1. 相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4;邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。

像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3所以,对顶角相等例题:1.如图,31=23,求1,2,3,4的度数2.如图,直线AB、CD、EF相交于O,且,,则_______,__________垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足如图所示,图中ABCD,垂足为O垂直的两条直线共形成四个直角,每个直角都是90例题:如图,ABCD,垂足为O,EF经过点O,1=26,求EOD,2,3的度数思考:EOD可否用途中所示的4表示?)垂线相关的基本性质:(1) 经过一点有且只有一条直线垂直于已知直线;(2) 连接直线外一点与直线上各点的所有线段中,垂线段最短;(3) 从直线外一点到直线的垂线段的长度,叫做点到直线的距离例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?*线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线。

如何作下图线段的垂直平分线?2.平行线:在同一个平面内永不相交的两条直线叫做平行线平行线公理:经过直线外一点,有且只有一条直线和已知直线平行如上图,直线a与直线b平行,记作a//b3.同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;例题:如图,直线AB,CD,EF相交于O点,DOB是它的余角的两倍,AOE=2DOF,且有OGOA,求EOG的度数2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截如图所示,直线AB,CD平行,被第三条直线EF所截这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;指出上图中的同位角,内错角,同旁内角。

两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补如上图,指出相等的各角和互补的角例题:1.如图,已知1+2=180,3=180,求4的度数2.如图所示,AB//CD,A=135,E=80求CDE的度数平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足1=2(或者3=4;5=7;6=8),就可以说AB//CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足6=2(或者5=4),就可以说AB//CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2=180(或者6+4=180),就可以说AB//CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1=2=90就可以得到。

例题:1.已知:AB//CD,BD平分,DB平分,求证:DA//BC2.已知:AF、BD、CE都为直线,B在直线AC上,E在直线DF上,且,,求证:3)有三个交点当三条直线两两相交时,共形成三个交点,12个角,这是三条直线相交的一般情况如下图所示:你能指出其中的同位角,内错角和同旁内角吗?三个交点可以看成一个三角形的三个顶点,三个交点直线的线段可以看成是三角形的三条边4)没有交点:这种情况下,三条直线都平行,如下图所示:即a//b//c这也是同一平面内三条直线位置关系的一种特殊情况例题:如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与CD有怎样的位置关系,为什么? 相交线与平行线基础题 1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________. ⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.13. 如图,那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.14. 设、b、c为平面上三条不同直线,a) 若,则a与c的位置关系是_________;b) 若,则a与c的位置关系是_________;c) 若,,则a与c的位置关系是。

下载提示
相似文档
正为您匹配相似的精品文档