文档详情

2024年上海市各区中考一模数学试卷专题汇编 08 锐角三角函数相关(16区66题)

二十****霸
实名认证
店铺
DOCX
3.70MB
约56页
文档ID:590309484
2024年上海市各区中考一模数学试卷专题汇编 08 锐角三角函数相关(16区66题)_第1页
1/56

专题08 锐角三角函数相关(16区66题)(原卷版)一、单选题1.(2024·上海崇明·统考一模)在直角坐标平面内有一点,点A与原点O的连线与x轴正半轴的夹角为,那么的值为(    )A. B. C. D.2.(2024·上海奉贤·统考一模)在中,,,,那么的长是(    )A. B. C. D. 3.(2024·上海松江·统考一模)已知在Rt△ABC中,∠C=90°,∠A=,BC=m,那么AB的长为( )A.; B.; C.; D..4.(2024·上海杨浦·统考一模)如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的正切值(    )A.扩大为原来的两倍 B.缩小为原来的C.不变 D.不能确定5.(2024·上海徐汇·统考一模)如图,在平面直角坐标系中,点,与轴正半轴的夹角为,则的值为(    )  A. B. C. D.6.(2024·上海宝山·统考一模)许多大型商场购物中心为了引导人流前往目标楼层,会考虑使用“飞梯”(可以跨楼层抵达的超高超长的自动扶梯).上海大悦城的“飞梯”从3层直达7层,“飞梯”的截面如图,的长为50米,与的夹角为,则高是()A.米 B.米 C.米 D.米7.(2024·上海徐汇·统考一模)进博会期间,从一架离地米的无人机上,测得地面监测点的俯角是,那么此时无人机与地面监测点的距离是(    )A.米 B.米 C.米 D.米8.(2024·上海黄浦·统考一模)如图,过矩形的顶点分别作对角线的垂线,垂足分别为,依次连接四个垂足,可得到矩形.设对角线与的夹角为,那么矩形与矩形面积的比值为(    )A. B. C. D.9.(2024·上海长宁·统考一模)在中,,如果,那么等于()A. B. C. D.10.(2024·上海浦东新·统考一模)已知在中,,,,那么下列等式正确的是(    )A. B. C. D.11.(2024·上海金山·统考一模)在直角坐标平面的第一象限内有一点,如果射线与x轴正半轴的夹角为,那么下列各式正确的是(   )A. B.C. D.12.(2024·上海普陀·统考一模)在中,已知,,,那么的长等于 (   )A.1 B.9 C. D.13.(2024·上海青浦·统考一模)已知,在Rt△ABC中,∠C=90°,BC=12,AC=5,则cosA的值是( )A. B. C. D.14.(2024·上海杨浦·统考一模)如图,为了测量学校教学楼的高度,在操场的处架起测角仪,测角仪的高米,从点测得教学大楼顶端的仰角为,测角仪底部到大楼底部的距离是米,那么教学大楼的高是(    )A. B.C. D.15.(2024·上海静安·统考一模)如果直线与轴正半轴的夹角为锐角,那么下列各式正确的是(   )A. B. C. D.二、填空题16.(2024·上海浦东新·统考一模)在中,,,,则 .17.(2024·上海长宁·统考一模)式子的值是 .18.(2024·上海崇明·统考一模)在中,,则的长为 .19.(2024·上海长宁·统考一模)已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为 .20.(2024·上海奉贤·统考一模)如图,已知在边长为1个单位的方格纸中,三角形的顶点在小正方形顶点位置,那么的正切值为 .21.(2024·上海徐汇·统考一模)计算: .22.(2024·上海金山·统考一模)如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度,那么相邻两树间的坡面距离为 米.23.(2024·上海黄浦·统考一模)已知点,那么直线与轴夹角的正弦值是 .24.(2024·上海静安·统考一模)如图,小红沿坡度的坡面由到行走了26米,那么小红行走的水平距离 米.25.(2024·上海青浦·统考一模)如图,某人沿着斜坡方向往上前进了30米,他的垂直高度上升了15米,那么斜坡的坡比 .26.(2024·上海崇明·统考一模)如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔25海里的A处,它沿正北方向航行到达位于灯塔正东方向上的B处,那么此时轮船与灯塔P的距离为 海里.27.(2024·上海松江·统考一模)如图,一辆小车沿着坡度为的斜坡从A点向上行驶了50米,到达B点,那么此时该小车上升的高度为 米.28.(2024·上海奉贤·统考一模)在中,,(是锐角),,那么的长为 .29.(2024·上海宝山·统考一模)计算: .30.(2024·上海黄浦·统考一模)已知等腰三角形的腰与底边之比为,那么这个等腰三角形底角的余弦值为 .31.(2024·上海宝山·统考一模)在中,若,,,则 .32.(2024·上海杨浦·统考一模)小华沿着坡度的斜坡向上行走了米,那么他距离地面的垂直高度上升了 米.33.(2024·上海杨浦·统考一模)在中,,,垂足为点,如果,,那么 .34.(2024·上海普陀·统考一模)如图,在边长为1的正方形网格中,点A、B、C、D、E都在小正方形顶点的位置上,连结、相交于,根据图中提示添加的辅助线,可以得到的值等于 .  35.(2024·上海宝山·统考一模)如图,斜坡,坡顶B离地面的高度为,如果坡比,那么这个斜坡的长度 m.36.(2024·上海徐汇·统考一模)如图,在中,和是的高,且交于点,已知,,,那么的正切值是 .37.(2024·上海徐汇·统考一模)如图,一段东西向的限速公路长米,在此公路的南面有一监测点,从监测点观察,限速公路的端点在监测点的北偏西方向,端点在监测点的东北方向,那么监测点到限速公路的距离是 米(结果保留根号).38.(2024·上海黄浦·统考一模)如图,在中,,将绕点旋转到的位置,其中点与点对应,点与点对应.如果图中阴影部分的面积为4.5,那么的正切值是 .39.(2024·上海金山·统考一模)如图,为了绕开岛礁区,一艘船从A处向北偏东的方向行驶8海里到B处,再从B处向南偏东方向行驶到发点A正东方向上的C处,此时这艘船距离出发点A处 海里.40.(2024·上海浦东新·统考一模)小明沿着坡度的斜坡向上行走了130米,那么他距离地面的垂直高度升高了 米.41.(2024·上海金山·统考一模)如果是直角三角形的一个锐角,,那么 .42.(2024·上海奉贤·统考一模)如图是某幢房屋及其屋外遮阳篷,已知遮阳篷的固定点A距离地面4米(即米),遮阳篷的宽度为米,遮阳篷与房屋墙壁的夹角α的余弦值为,当太阳光与地面的夹角为时,遮阳篷在地面上的阴影宽度为 米.43.(2024·上海青浦·统考一模)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,相交于点O,那么的值为 .44.(2024·上海长宁·统考一模)如图,在中,,点是的重心,联结,如果,那么的余切值为 .45.(2024·上海奉贤·统考一模)某人顺着坡度为的斜坡滑雪,下滑了米,那么高度下降了 米.46.(2024·上海杨浦·统考一模)如图,已知与相似,,,,,连接,交边于点,那么线段的长是 .47.(2024·上海杨浦·统考一模)如图,已知在菱形中,,将菱形绕点旋转,点、、分别旋转至点、、,如果点恰好落在边上,设交边于点,那么的值是 .48.(2024·上海静安·统考一模)如图,中,,,.点、分别在边、上,,那么的长为 .(用含的代数式表示)  49.(2024·上海青浦·统考一模)规定:平面上一点到一个图形的距离是指这点与这个图形上各点的距离中最短的距离.如图①当时,线段的长度是点到线的距离;当时,线段的长度是点到线段MN的距离;如图②,在中,,,,点D为边上一点,,如果点Q为边上一点,且点Q到线段的距离不超过,设的长为d,那么d的取值范围为 . 50.(2024·上海松江·统考一模)在中,,点D、E分别是边、的中点,与相交于点O,如果是等边三角形,那么 .51.(2024·上海宝山·统考一模)已知和是矩形的两条对角线,将沿直线翻折后,点D落在点E处,三角形与矩形的重叠部分是三角形,连接,如果,,那么的正切值是 .三、解答题52.(2024·上海普陀·统考一模)计算:.53.(2024·上海黄浦·统考一模)计算:.54.(2024·上海静安·统考一模)计算:.55.(2024·上海金山·统考一模)计算:.56.(2024·上海崇明·统考一模)计算:.57.(2024·上海浦东新·统考一模)计算:.58.(2024·上海浦东新·统考一模)如图,已知在四边形中,,,对角线、相交于点O,,,.(1)求的面积;(2)求的正弦值.59.(2024·上海宝山·统考一模)如图,在中,,,,点D是边上一点,且.(1)求的长;(2)求的余切值.60.(2024·上海杨浦·统考一模)如图,在中,,,的垂直平分线交边于点,交边于点,交的延长线于点.(1)求的长;(2)求的正弦值.61.(2024·上海青浦·统考一模)计算:.62.(2024·上海松江·统考一模)如图,A处有一垂直于地面的标杆,热气球沿着与的夹角为的方向升空,到达B处,这时在A处的正东方向200米的C处测得B的仰角为(、B、C在同一平面内).求A、B之间的距离.(结果精确到1米,)63.(2024·上海松江·统考一模)已知:如图,中,,,,于D.(1)求的长;(2)如果点E是边的中点,求大小.64.(2024·上海崇明·统考一模)如图,某校九年级兴趣小组在学习了解直角三角形知识后,开展了测量山坡上某棵大树高度的活动.已知小山的斜坡的坡度,在坡面D处有一棵树(假设树垂直水平线),在坡底B处测得树梢A的仰角为,沿坡面方向前行30米到达C处,测得树梢A的仰角为.(点B、C、D在一直线上)  (1)求A、C两点的距离;(2)求树的高度(结果精确到米).(参考数据:)65.(2024·上海金山·统考一模)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷长为4米,与墙面的夹角,靠墙端A离地高为3米,当太阳光线与地面的夹角为时,求阴影的长.(结果精确到米;参考数据:)66.(2024·上海奉贤·统考一模)计算:.专题08 锐角三角函数相关(16区66题)(解析版)一、单选题1.(2024·上海崇明·统考一模)在直角坐标平面内有一点,点A与原点O的连线与x轴正半轴的夹角为,那么的值为(    )A. B. C. D.【答案】D【分析】本题考查了求锐角的正切值;画出图形,过A作轴于B,则由点A的坐标可得,由正切的定义即可求解.【详解】解:如图,过A作轴于B,∵,∴,∴;故选:D.2.(2024·上海奉贤·统考一模)在中,,,,那么的长是(    )A. B. C. D. 【答案】A【分析】本题考查了正切的定义,正切等。

下载提示
相似文档
正为您匹配相似的精品文档