文档详情

椭圆与双曲线知识总结

wd****9
实名认证
店铺
DOCX
45.74KB
约8页
文档ID:270127310
椭圆与双曲线知识总结_第1页
1/8

椭圆与双曲线知识总结1.求曲线,双曲线,椭圆的重要知识点归纳,和考点分析(必背的经典结论)高三数学备课组椭 圆1. 点P处的切线PT平分△PF1F2在点P处的外角.2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.6. 若在椭圆外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7. 椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.8. 椭圆(a>b>0)的焦半径公式:,( , ).9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11. AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即.12. 若在椭圆内,则被Po所平分的中点弦的方程是.13. 若在椭圆内,则过Po的弦中点的轨迹方程是.双曲线1. 点P处的切线PT平分△PF1F2在点P处的内角.2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)5. 若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是.6. 若在双曲线(a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7. 双曲线(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为.8. 双曲线(a>0,b>o)的焦半径公式:( , 当在右支上时,.当在左支上时,9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11. AB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即.12. 若在双曲线(a>0,b>0)内,则被Po所平分的中点弦的方程是.13. 若在双曲线(a>0,b>0)内,则过Po的弦中点的轨迹方程是.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组椭 圆1. 椭圆(a>b>o)的两个顶点为,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过椭圆 (a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数).3. 若P为椭圆(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则.4. 设椭圆(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记, ,则有.5. 若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立.7. 椭圆与直线有公共点的充要条件是.8. 已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.9. 过椭圆(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则.10. 已知椭圆( a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 则.11. 设P点是椭圆( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) .12. 设A、B是椭圆( a>b>0)的长轴两端点,P是椭圆上的一点, ,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .13. 已知椭圆( a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质--(会推导的经典结论)高三数学备课组双曲线1. 双曲线(a>0,b>0)的两个顶点为,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过双曲线(a>0,b>o)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数).3. 若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则(或).4. 设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记, ,则。

2.谁能帮我总结一下数学的椭圆与双曲线的知识点1.椭圆的几何性质 根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.根据曲线的条件列出方程.如果说是解析几何的手段,那么根据曲线的方程研究曲线的性质、画图、就可以说是解析几何的目的. 下面我们根据椭圆的标准方程 来研究椭圆的几何性质. (1)范围 引导学生从标准方程 ,得出不等式 , ,即 , .这说明椭圆的直线 和直线 所围成的矩形里(如图),注意结合图形讲解,并指出描点画图时,就不能取范围以外的点. (2)对称性 先让学生阅读教材中椭圆的几何性质2. 设问:为什么“把 换成 ,或把 换 ,或把 、同时换成 、时,方程解不变.则图形关于 轴、轴或原点对称”呢? 事实上,在曲线方程里,如果把 换成 ,而方程不变,那么当点 在曲线上时,点 关于 轴的对称点 也在曲线上,所以曲线关于 轴对称.类似地可以证明其他两个命题. 同时应向学生指出:如果曲线具有关于 轴对称,关于 轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称. 最后强调: 轴、轴是椭圆的对称轴.原点是椭圆的对称中心即椭圆中心.进而说明椭圆的中心是焦点连线的中点,对称轴是焦点的连线及其中垂线与坐标系无关.因而是曲线的固有性质. (3)顶点 引导学生从椭圆的标准方程 分析它与 轴、轴的交点,只须令 得 ,点 、是椭圆与 轴的两个交点;令 得 ,点 、是椭圆与 轴的两个交点.应该强调:椭圆有四个顶点 、、、. 同时还需指出: (1°)线段 和 分别叫做椭圆的长轴和短轴,它们的长分别等于 和 ; (2°) 、的几何意义: 是椭圆长半轴的长, 是椭圆短半轴的长. (3°)椭圆的顶点即是椭圆与对称轴的交点,一般二次曲线的顶点即是曲线与其对称轴的交点. 这时教师可作如下小结:由椭圆的范围,对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形. (4)离心率 由于离心率的概念比较抽象,教师可直接给出离心率的定义: 椭圆的焦距与长轴长的比 ,叫做椭圆的离心率. 先分析离心率 的取值范围: ∵ , ∴ . 再结合图表分析离心率的大小对椭圆形状的影响: (1)当 趋近于1时, 趋近于 ,从而 越小,因此椭圆越扁平: (2)当 趋近于0时, 趋近于0,从而 趋近于 ,因此椭圆越接近于圆.2..文字语言定义 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率2.集合语言定义 设 双曲线上有一动点M,定点F,点M到定直线距离为d, 这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线. 注意:定点F要在定直线外 且 比值大于1. 3.标准方程 设 动点M(x,y),定点F(c,0),点M到定直线l:x=a^2/c的距离为d, 则由 |MF|/d=e>1. 推导出的双曲线的标准方程为 (x²/a²)-(y²/b²)=1 其中a>0,b>0,c²=a²+b². 这是中心在原点,焦点在x轴上的双曲线标准方程. 而中心在原点,焦点在y轴上的双曲线标准方程为: (y²/a²)-(x²/b²)=1. 同样的:其中a>0,b>0,c²=a²+b².编辑本段·双曲线的简单几何性质 1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)2、对称性:关于坐标轴和原点对称 3、顶点:A(-a,0), A'(a,0)同时 AA'叫做双曲线的实轴且∣AA'│=2a. B(0,-b), B'(0,b)同时 BB'叫做双曲线的虚轴且│BB'│=2b. 4、渐近线: 焦点在x轴:y=±(b/a)x. 焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。

其中p为焦点到准线距离,θ为弦与X轴夹角 令1-ecosθ=0可以求出θ,这个就是渐近线的倾角θ=arccos(1/e) 令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e 令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e 这两个x是双曲线定点的横坐标求出他们的中点的横坐标(双曲线中心横坐标) x=【(ep/1-e)+(-ep/1+e)】/2 (注意化简一下) 直线ρcosθ=【(ep/1-e)+(-ep/1+e)】/2 是双曲线一条对称轴,注意是不与曲线相交的对称轴 将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ' 则θ'=θ-【PI/2-arccos(1/e)】 则θ=θ'+【PI/2-arccos(1/e)】 带入上式: ρcos{θ'+【PI/2-arccos(1/e)】}=【(ep/1-e)+(-ep/1+e)】/2 即:ρsin【arccos(1/e)-θ'】=【(ep/1-e)+(-ep/1+e)】/2 现在可以用θ取代式中的θ'了 得到方程:ρsin【arccos(1/e)-θ】=【(ep/1-e)+(-ep/1+e)】/2 5、离心率: 第一定义: e=c/a 且e∈(1,+∞). 第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e. d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e 6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离) 右焦半径:r=│ex-a│ 左焦半径:r=│ex+a│ 7、等轴双曲线 一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2 这时渐近线方程为:y=±x(无论焦点在x轴还是y轴) 8、共轭双曲线 双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。

几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1 特点:(1)共渐近线 (2)焦距相等 (3)两双曲线的离心率平方后3.1.如何判断双曲线、椭圆的焦点在x轴还是y轴2.双曲线与椭圆在知识点1.椭圆x^2/a^2+y^2/b^2=1,比较a^2和b。

下载提示
相似文档
正为您匹配相似的精品文档