文档详情

细胞离心方法和原理

mg****85
实名认证
店铺
DOCX
21.76KB
约3页
文档ID:34462646
细胞离心方法和原理_第1页
1/3

离心方法和原理差速离心主要是采取逐渐提高离心速度的方法分离不同大小的细胞器起始的离心速度较低,让较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的密度梯度离心(density gradient centrifugation)   用一定的介质在离心管内形成一连续或不连续的密度梯度,将细胞混悬液或匀浆置于介质的顶部,通过重力或离心力场的作用使细胞分层、分离这类分离又可分为速度沉降和等密度沉降平衡两种密度梯度离心常用的介质为氯化铯,蔗糖和多聚蔗糖分离活细胞的介质要求:1)能产生密度梯度,且密度高时,粘度不高;2) PH 中性或易调为中性;3)浓度大时渗透压不大;4 )对细胞无毒密度梯度离心原理  不同颗粒之间存在沉降系数差时,在一定离心力作用下,颗粒各自以一定速度沉降,在密度梯度不同区域上形成区带的方法密度梯度离心法 density gradient centrifugation method   〔1 〕 亦称平衡密度梯度离心法用超离心机对小分子物质溶液,长时间加一个离心力场达到沉降平衡,在沉降池内从液面到底部出现一定的密度梯度。

若在该溶液里加入少量大分子溶液,则溶液内比溶剂密度大的部分就产生大分子沉降,比溶剂密度小的部分就会上浮,最后在重力和浮力平衡的位置,集聚形成大分子带状物利用这种现象,测定核酸或蛋白质等的浮游密度,或根据其差别进行分析的一种沉降平衡法自 1958 年米西尔逊(M .Meselson) ,斯塔尔(F .W .Stahl ) ,维诺格拉德( J.Vinograd )成功地分离了〔15N〕 DNA 和〔14N〕DNA 以来,该法取得许多成果为得到必要的浓度梯度,多采用浓氯化铯溶液,所以有时也使用氯化铯浓度梯度离心法这个名称,还可采用氯化铷、溴化铯等溶液通常利用分析超离心机,但在将细胞颗粒成分进行分离等以纯化为目的的情况,利用密度差,使用分离超离心机,采用预先制备好的蔗糖等的密度梯度〔2 〕 采用蔗糖等一些小分子溶液,预先在分离超离心机的样品地内制备出密度梯度,在其上面再加上一层少量的大分子溶液后,离心,大分子就形成层状而沉降若含有沉降系数不同的许多成分,就会出现许多层这种情况采用适当的编排号码,取出样品池内的溶液,然后进行研究这是与〔1〕不同的一种沉降速度法,除了以相同的目的被用于通常的沉降速度法外,在能取出分离物这点上是有优越性的。

因多采用蔗糖密度梯度,所以亦称为蔗糖密度梯度离心法按同样原理,也可使用分析超离心机进行测定差速离心法是根据颗粒大小和密度的不同存在的沉降速度差别,分级增加离心力,从试样中依次分离出不同组分的方法差速离心法是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法此法适用于混合样品中各沉降系数差别较大组分的分离密度梯度离心法是在密度梯度介质中进行的依密度而分离的离心法各组分会依其密度分布在与其自身密度相同的液层中密度梯度可以离心前预先制备或在离心中自然形成可用于分析型或制备型的离心分离1:密度梯度离心中单一样品组份的分离是借助于混合样品穿过密度梯度层的沉降或上浮来达到的;差速离心法是用不同强度的离心力使具有不同质量的物质分级分离2:密度梯度离心只用一个离心转速,而差速离心用两个甚至更多的转速3:密度梯度离心的物质是密度有一定差异的,而差速离心是适用于混合样品中各沉降系数差别较大组分二者都是依靠离心力对细胞匀浆悬浮扔中的颗粒进行分离的技术差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。

沉降系数(sedimentation coefficient)   用离心法时,大分子沉降速度的量度,等于每单位离心场的速度或 s=v/ω2rs 是沉降系数,ω 是离心转子的角速度(弧度/ 秒) ,r 是到旋转中心的距离, v 是沉降速度沉降系数以每单位重力的沉降速度表示, (the velocity per unit force)并且通常为 1~200 ×10-13 秒范围, 10-13 这个因子叫做沉降单位S,即 1S=10-13 秒.沉降系数越大在离心时候越先沉降如血红蛋白的沉降系数约为 4×10-13 秒或 4S大多数蛋白质和核酸的沉降系数在 4S 和 40S 之间,核糖体及其亚基在 30S 和80S 之间,多核糖体在 100S 以上定义  沉降系数(sedimentation coefficient,s )   根据 1924 年 Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度   To call the parameter which characterizes the movement of the particle at the centrifugal force place。

   沉降系数是以时间表示的   蛋白质,核酸等生物大分子的 S 实际上时常在 10 的-13 次秒左右,故把沉降系数 10 的-13 次秒称为一个 Svedberg 单位,简写 S,量纲为秒   [ Adopted unit ] second   [ Another unit ] 1 svedberg = 1E(-13) sec   [ SI unit ] second   因随溶剂的种类、温度的变化而变化,所以通常是换算成 20℃纯水中的数值,进一步算出分子间无作用力和浓度为零时的外插值沉降系数是以分子量、分子形状和水等情况来决定,其作为生物体大分子的一个特征是很重要的编辑本段测定  沉降系数通过分析离心机测定   通常只需要几十毫克甚至几十微克样品,配制成 1~2毫升溶液,装入分析池,以几小时的分析离心,就可以获得一系列的样品离心沉降图根据沉降图可以作样品所含组分的定性分析,亦可以测定各组分的沉降系数和估计分子大小,作样品纯度检定和不均一性测定,以组分的相对含量测定编辑本段测定原理  沉降系数的测定原理就是在恒定的离心力场下测定样品颗粒的沉降速度   因为样品颗粒很小,不能直接看到它们的沉降运动,所以把离心时样品颗粒的界面移动速度看作是样品颗粒的平均沉降速度。

通常使用 Schlieren 和吸收光学系统来记录界面沉降图在沉降图中样品界面一般表现为一个对称的峰,峰的最高点代表界面位置   通常沉降系数测量精度为±2%,但是如果面界图型表现为不对称峰型,或希望沉降系数测量精度达到±1%或更小的情况时,按峰的最高点作为界面位置就不够了这时应该使用二阶距法计算界面位置基本原理物体围绕中心轴旋转时会受到离心力 F 的作用当物体的质量为 M、体积为 V、密度为 D、旋转半径为 r、角速度为 ω(弧度数/秒)时,可得:   F=Mω2r 或者 F=V.D.ω 2r ( 1)   上述表明:被离心物质所受到的离心力与该物质的质量、体积、密度、离心角速度以及旋转半径呈正比关系离心力越大,被离心物质沉降得越快   在离心过程中,被离心物质还要克服浮力和摩擦力的阻碍作用浮力 F‘ 和摩擦力 F’‘ 分别由下式表示:   F’=V.D’.ω2r (2 )   F ’’=f dr/dt (3)   其中 D}为溶液密度,f 为摩擦系数, dr/dt 为沉降速度(单位时间内旋转半径的改变)   基本原理   在一定条件下,可有 :   F=F’+F’ ’   V.D. ω2r =V.D’ω2r + f. dr/dt   dr/dt =Vω2r (D-D’)/f (4)   式(4) 表明,沉降速度与被离心物质的体积、密度差呈正比,与 f 成反比。

若以 S 表示单位力场(ω2r=1)下的沉降速度,则   S=V (D-D’)/f   S 即为沉降系数   沉降系数对于生物大分子来说,多数在(1~500)×10-13 秒之间为应用方便起见,人们规定 1×10-13 秒为一个单位(或称 1S) 一般单纯的蛋白质在 1~20S 之间,较大核酸分 子在 4~100S 之间,更大的亚细胞结构在 30~500S 之间   以蛋白质为例溶液中的蛋白质在受到强大的离心作用时,如果蛋白质溶液的密度大于溶剂的密度,蛋白质分子就会下沉,在离心场中,蛋白质分子所受到的净离心力(离心力减去浮力)与溶剂的摩擦力平衡时,每单位离心场强度定值,这个定值即为沉降系数(sedimentation coefficient) 沉降速度用每单位时间内颗粒下沉的距离来表示测定方法⑴样品:蛋白质   ⑵样品溶液与离心:将样品溶于缓冲液中,用一定规格的双槽分析池,一边加入溶液一边加入溶剂分析池与平衡池平衡重量,使平衡池比分析池轻 0.5g以内,然后分别装入分析转头开 Schlieren 光光源,选择工作速度,室温离心转动腔达到真空后离以机开始运转加速,此时在观察窗口可以看到离心图型。

达到工作速度后恒速离心   以蛋白质为例待看到样品峰的尖端后即可以间隔照相照完相即可关机,取出样品液,清理转头和分析池照相用强反差显影冲洗后即得 Schlieren 光路沉降图形照片    ⑶沉降图像测量:Schlieren 沉降图可以用比长仪,读数显微镜,或投影仪测量测量时把沉降图像的底片放于测量仪器上,使液面的垂直线与测量仪中的垂直线重合,然后用十字标线依次测量内参孔,液面,界面峰尖,和外参考孔的位置,每个图像至少读测三次,取平均值依次把每个图像依同样方法测量,把数据列成表   (4)沉降系数S 的计算:代入公式计算编辑本段图像分析  当离心刚开始时如果见到有快速沉降的峰,几分钟内就到达分析池底部,一般多是由于样品发生部分聚合形成快速沉降的高聚物离心达速后样品的的记心图像显示一个对称的峰形,一般可以认为样品是离心均一的但是对样品的真正均一性还应用其他方法进一步检测,如电泳,层析等某些混合样品偶然亦会给出一个对称峰的峰形通常会随时间而扩展,这是由于样品扩散的结果但如果峰形扩展很快,则该样品可能是多分散性的如果离心图像中表现几个峰,说明样品中有几个组分,每一个峰代表相应组分的沉降界面,因此可以测定每一个组分的沉降系数值。

根据峰的面积可以测量组分的浓度值   有时离心的图像表现出一个不对称的峰,这可能是由于下列几种情况所致①几个沉降系数接近的组分峰形重叠,②样品是多分散性的,其分子量分布不均匀,③某些相互作用强的高分子,其沉降速度对浓度依赖很大若测定于高浓度,在界面区由于浓度变化造成沉降速度不一致而致峰形呈不对称分布扩展阅读: 1 2 《生物化学实验》 。

下载提示
相似文档
正为您匹配相似的精品文档