一、数据挖掘数据挖掘是运用计算机及信息技术,从大量的、不完全的数据集中获取隐含在其中的有用知识的高级过程Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用Web 数据挖掘是一项综合技术,通过从Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从Web 文档结构和试用的集合中发现隐含的模式数据挖掘涉及的学科领域和方法很多,有多种分类法1)根据挖掘对象分:关系数据库、面向对象数据库、空间数据库、时序数据库、DNA 数据库、多媒体数据库、异质数据库、遗产数据库以及Web数据库等;(2)根据挖掘方法分:机器学习方法、统计方法、神经网络方法和数据库方法等;a. 机器学习方法可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等b.统计方法可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等c. 神经网络方法可细分为:前向神经网络(BP 算法等)、自组织神经网络(自组织特征映射、竞争学习等)等3)根据开采任务分:可分为关联规则、分类、聚类、时间序列预测模型发现和时序模式发现等。
a.关联规则:典型的关联规则发现算法是Apriori算法,该算法也称广度优先算法,是A.Agrawal和R.Srikandt于1994年提出的,它是目前除AIS 算法、面向SQL的SETM 算法外几乎所有频繁项集发现算法的核心,其基本思想是:如果一个项集不是频繁集,则其父集也不是频繁集,由此大大地减少了需要验证的项集的数目,在实际运行中它明显优于AIS 算法Apriori算法是关联规则挖掘中最具有影响的一种算法.所谓关联规则就是从事务数据库、关系数据库和其他数据存储中的大量数据的项集之间发现有趣的、频繁出现的模式、关联和相关性.关联规则可以分为两步:1)找出所有频繁项集.这部分主要由后面介绍的Apriori算法来解决.2)由频繁项集产生相关联规则:这些规则必须满足最小支持度和最小置信度.b.分类规则:数据挖掘的一个重要任务是对海量数据进行分类数据分类是基于一组数据的某些属性的值进行的数据分类的方法很多,包括决策树方法、统计学方法、神经网络方法、最近邻居方法等等其中,基于决策树的分类方法与其它的分类方法比较起来,具有速度较快、较容易转换成简单的并且易于被理解的分类规则、较易转换成数据库查询语言、友善、可得到更高的准确度等优点。
c.数据聚类:其基本思想是:对数据进行分析的过程中,在考虑数据间的“距离”的同时,更侧重考虑某些数据间具有类的共同内涵数据聚类是对一组数据进行分组,这种分组基于如下的原理:最大的组内相似性与最小的组间相似性d. 时序模式:可用如下的例子描述时序模式:一个顾客先租看影片“Star Wars”,然后租“Empire Strikes Back”,再租“Return of the Judi”,注意到这些租借事物的发生不一定是连着的像这样一次事件的发生会导致某些事物的相继发生的事件模式,称为时序模式e.相似模式:时态或空间—时态的大量数据存在于计算机中,这些数据库例子包括:股票价格指数的金融数据库、医疗数据库、多媒体数据库等等在时态或空间—时态数据库中搜索相似模式的目的是发现和预测风险、因果关系及关联于特定模式的趋势 二、Web挖掘Web 站点上的数据有其自身的特点,主要的可以归纳为以下几点:1 、数据量巨大,动态性极强;2、 异构数据库环境;3 、半结构化的数据结构Web 数据挖掘可以分为Web 内容挖掘,Web结构挖掘,Web 使用挖掘三类Web 内容挖掘是从文档内容或其描述中抽取有用信息的过程,Web 内容挖掘有两种策略:直接挖掘文档的内容和在其他工具搜索的基础上进行改进。
采用第一种策略的有针对Web 的查询语言WebLOG,利用启发式规则来寻找个人主页信息的AHOY 等采用第二种策略的方法主要是对搜索引擎的查询结果进行进一步的处理, 得到更为精确和有用的信息属于该类的有WebSQL ,及对搜索引擎的返回结果进行聚类的技术等根据挖掘处理的数据可以将Web 内容挖掘分为文本挖掘和多媒体挖掘两个部分Web 结构挖掘是从Web 组织结构和链接关系中推导知识挖掘页面的结构和Web 结构,可以用来指导对页面进行分类和聚类,找到权威页面、中心页面,从而提高检索的性能同时还可以用来指导页面采集工作,提高采集效率Web 结构挖掘可以分为Web 文档内部结构挖掘和文档间的超链接结构挖掘这方面的代表有Page Rank和CLEVER,此外,在多层次Web数据仓库( MLDB )中也利用了页面的链接结构Web 使用挖掘是从服务器端记录的用户访问日志或从用户的浏览信息中抽取感兴趣的模式,通过分析这些数据可以帮助理解用户隐藏在数据中的行为模式,做出预测性分析,从而改进站点的结构或为用户提供个性化的服务Web 挖掘相关技术:数据挖掘方法通常可以分为两类: 一类是建立在统计模型的基础上, 采用的技术有决策树、分类、聚类、关联规则等; 另一类是建立一种以机器学习为主的人工智能模型,采用的方法有神经网络、自然法则计算方法等。
Web 内容挖掘:1、Web 文本挖掘Web 文本挖掘可以对Web 上的大量文档的集合的内容进行总结、分类、聚类、关联分析,以及利用Web 文档进行趋势预测在Internet 上的文本数据一般是一组html 格式的文档集,要将这些文档转化成一种类似关系数据库中记录的规整且能反映文档内容特征的表示,一般采用文档特征向量,但目前所采用的文档表示方法中,都存在一个弊端就是文档特征向量具有非常大的维数,使得特征子集的选取成为Internet 上文本数据挖掘过程中的必不可少的一个环节在完成文档特征向量维数的缩减后,便可利用数据挖掘的各种方法,如分类、聚类、关联分析等来提取面向特定应用的知识模式,最后对挖掘结果进行评价,若评价结果满足一定的要求则输出,否则返回到以前的某个环节,分析改进后进行新一轮的挖掘工作关联规则模式数据描述型模式, 发现关联规则的算法属于无监督学习的方法发现关联规则通常要经过以下3个步骤: ①连接数据, 做数据准备; ②给定最小支持度和最小可信度, 利用数据挖掘工具提供的算法发现关联规则;③可视化显示、理解、评估关联规则目前 Web 内容挖掘研究主要集中在基于文本内容的检索、信息过滤的提炼、重复数据消除、数据模式抽取、中间形式表示、异构集成、文本分类和聚类、文档总结和结构提取、数据仓库及OLAP等几个方面,尤其是基于XML的上述专题研究。
对分类挖掘而言,在预处理阶段要做的事情就是把这个Web页面集合文本信息转化成一个二维的数据库表,其中每一列是一个特征,每一行为一个Web页面的特征集合在文本学习中常用的方法是TF工DF向量表示法,它是一种文档的词集(bag-of-words)表示法,所有的词从文档中抽取出来,而不考虑词间的次序和文本的结构构造这种二维表的方法是:每一列为一个词,列集(特征集)为辞典中的所有有区分价值的词,所以整个列集可能有几十万列之多每一行存储一个页面内词的信息,这时,该页面中的所有词对应到列集(特征集)上列集中的每一个列(词),如果在该页面中不出现,则其值为0;如果出现k次.那么其值就为k这样就可以表征出页面中词的频度这样构造的二维表表示的是Web页面集合的词的统计信息,最终就可以采用Naive Bayesian方法或k-Nearest Neighbor方法进行分类挖掘WebSQL 是一个用于Web 页重构的查询语言,利用Web 文档的图树表示形式,可从的文档站点或导游指南中获取信息而Ahoy则利用像搜索引擎一类的互联网服务来获取与个人有关的服务,利用试探法识别文档中显示该文档作为个人主页的句法特征分词目前已有很多分词算法,如:正向最大匹配法(MM)、逆向最大匹配法(RMM)、逐词遍历匹配法、设立切分标志法、正向最佳匹配法和逆向最佳匹配法等。
近几年又提出了很多新的方法旨在提高分词的精度和分词的速度,如:生成测试法通过词法ATN和语义ATN之间的相互作用来进行歧分决策,以提高分词的精确性;改进的MM分词算法采用正向增字最大匹配法和跳跃匹配法,结合词尾语义检查和归右原则以消除类型歧义;基于神经网络的分词方法尝试利用神经网络来处理歧分问题,但同时又引入一个问题:训练样本的选取,由于自然语言的复杂性,如何选取训练样本还需要作深入的研究;结合直接匹配算法、后缀分词算法和词表结构支持首字Hash的方法,局部提高了速度,但不能进行标准的二分查找;支持首字Hash的近邻匹配算法利用最大增字匹配算法,并支持首字Hash和标准二分查找以提高分词速度分词的基本算法有: (1)基于词典与规则匹配法基于词典与规则的方法应用词典匹配, 汉语词法或其它汉语语言知识进行分词, 这类方法简单、分词效率较高,但对词典的完备性、规则的一致性等要求比较高匹配策略有: 最大匹配法、最小匹配法、逆向匹配法、增字或减字匹配法、双向扫描法2)标志法如切分标志法、统计标引法3)词频统计法基于统计的分词方法将汉语基于字和词的统计信息, 完备性较差4)语义语用法如后缀分词法目前使用最多的是基于词库的分词方法。
由于中文在分词时可能产生二义性, 如“计算机器”可分成“计算”“/ 机器”和“计算机”“/ 器”, 这样必须结合其它分分词方法, 如基于语法规则的分词法、基于朴素贝叶斯分词法等在具体的分词过程中, 我们还可以将单词变型归并, 像同义词、近义词可进行归并, 如“因特网”和“万维网”可当成一个词条处理语义Web 是下一代的Web 技术,它赋予Web 以计算机可理解的语义信息在语义Web技术中,本体起着重要的作用本体是人们对领域知识达成的共识,是对领域的形式化与结构化的描述本项目针对语义Web 目前存在的问题,应用语义Web 技术,信息集成和信息管理的若干关键技术,从多个方面对语义Web 进行研究1)语义信息集成对本体的语义标注和本体集成方法进行研究,利用基于本体的语义标注和本体映射技术从异构的资源中抽取出有用信息,并通过映射方法集成多种信息源的的信息2)语义查询实现语义信息的多种查询方式,包括:本体的可视化导航查询,针对概念/实例/属性的查询,基于全文检索技术的查询,语义关系的查询3)语义信息挖掘语义信息的挖掘一直处在一个很浅层的阶段,目前的多数研究一直处在传统的文本信息挖掘本项目的研究主要从本体实例聚类、本体分类,本体关联规则挖掘以及本体中关键词的抽取。
这些技术是语义Web 的应用的基础,他们可以用来分析语义信息的趋势,语义数据的自动处理等4)语义Web Service通过系统定义的软件本体对Web Service 进行描述,从而实现WebService 的评估、组装等功能5)基于Peer to Peer 的语义信息管理这个问题的核心思想是要通过集成已有的Peer to Peer框架实现语义挖掘平台在P2P 环境下的应用6)算法解释利用定义的基础数据结构对上述算法的执行过程进行log,从而轻松的实现用户-算法及开发-算法之间的交互提供针对算法本身的更友好的接口 2 、Web 多媒体挖掘Web 多媒体挖掘与Web 文本挖掘的不同点就在于需要提取的特征不同Web 多媒体挖掘需要提取的特征一般包括图像或视频的文件名URL 、类型、键值表、颜色向量等然后可以对这些特征进行挖掘工作如关联分析发现类似“如果图像是‘大’而且与关键词‘草原’有关,那么它是绿色的概率是0. 8”的关联规则当然也可以对多媒体进行分类、聚类等操作多媒体数据挖掘的方法主要有:多媒体数。