文档详情

乘法的内涵定义和意义

新**
实名认证
店铺
DOCX
11.71KB
约3页
文档ID:481531969
乘法的内涵定义和意义_第1页
1/3

乘法的内涵、定义和意义乘法的内涵、定义和意义乘法的内涵、定义乘法是为了方便计算,总结出来的一种算数方法,我查了一下定义,其实大同小异,差不多都是这样的解释,下面就是我查到的定义:1、是指将相同的数加法起来的快捷方式.其运算结果称为积.2、是指一个数或量,增加了多少倍.例如 4乘 5,就是 4 增加了 5 倍率,也可以 说成 5 个 4 连加.乘法的意义乘法的意义是什么?在旧教材中分的非常清楚,但是学生却易记错,如今新课 标下的乘法算式已经不区分乘数与被乘数,5 个 3 可以列成 5*3 与可以列成 3*5, 学生是方便了,老师却糊涂了,特别是教到四年级小数的乘法时,5*0.3 与 0.3*5 这两个算式的意义怎么也说不清楚或者是不敢说清楚,读了《南方教师教育》200612 用新思想去审视新教材中的“乘法意义”一文,让我们对这类问题有了更清楚 的认识,下面把全文摘抄如下:上个世纪八十年代中期《小学数学教师》就曾展开了一轮关于“乘法意义”的 讨论,当时的结论基本上是赞同不必区分被乘数和乘数,后来的课程改革也是朝这 个方向走的现在,我们再回过头去用新的思想去审视新教材中的“乘法意义”, 我们会有不少新的发现。

一、 新教材“乘法意义”更接近乘法的本质整数乘法意义是“求几个相同加数的和的简便运算”这一本质在过去和今天的 教材都是一样的只是在形式上,新教材允许把“4+4+4+4+4”改写成“4X5”也 可以写成“5X4”反过来,也就是说“5X4”可以表示“4个5相加的和”也可 以表示“5 个 4 相加的和”这可以说是 “乘法意义”的一次突破,使我们对“乘法意义”的认识更接近其本质,因为“5X4”可以表示两种意义,以前只有一 种意义完全是人为规定二、 新教材“乘法意义”开拓了人的思维空间如上所述,新教材“乘法意义”不再是一个答案了当我们解放自己的思想之 后,回到现实中的数学之后,我们一定会发现我们思维空间突然变得宽阔了!如果 让学生算“72X8+2X72”,这种题型在过去是一个教学的难点因为要理解它必 须用到“交换律”和“分配律”,要不就会“拐不过弯来”今天的学生却可以十 分自然地选择适当的意义而想到:8个72加上2个72不就是10个72啦!而这种 如此简单的想法在过去会被认为是不合逻辑的或不严密的因此,新教材“乘法意 义”解放了人的思想,开拓了人的思维空间,为创新思维的提供了更好的平台三、 分数乘法同样不必再区分被乘数和乘数。

有人提出“如果专家们真的考虑不区分分数乘法意义,将导致什么后果?想起 来还挺可怕的这种“可怕”也许就是担心学生会出现一些如上所述的“不符合 逻辑的、不严密的”想法,于是“怀念她对数学的严肃、严谨的态度”数学本身 确实以严密的逻辑体系的而成立,这也是使过去中小学数学成为机械、枯燥学科的 一个重要原因但对于这些早已严格论证过的数学知识,在教学中非得像写数学论 著一样让学生去接受吗?何况原来的想法不一定符合实际,如“乘法意义”的唯一 性就是一例因此,在分数乘法意义中,同样不必区分4/9X6和6X4/9以及 3/4X4/9和4/9X3/4之类的意义,因为它们本身都有两种意义如4/9X6可以 表示“6的4/9”,也可以表示“4/9的6倍”或“6个4/9”但是,在一个具体 的问题中,它的意义一般可以认为是特定的,如“一根6米长的绳子,用去4/9, 用去多少米?”不论你写成6X4/9还是写成4/9X6,都可以理解为“6米的 4/9”不过,有趣的是通过特定的想法还可以给它们都“赋予”另一种它们本来 就有的意义:1米的4/9就是4/9米,那么6米的4/9就有6个1米的4/9,也就 是6个4/9米在这里不区分“6个1米”的4/9和6个“1米的4/9”,是因为 我们知道,能够从逻辑上证明它们是相同的。

同样,对于“某厂原有煤4000吨, 炼钢用去了2/5,炼铁用去的是炼钢的1/5,炼铁用去了多少吨?”,如果列式就是 写成了 “2/5X1/5X4000 ”也就能理解了四、 “乘法意义”具有阶段性与统一性乘法意义”在不同阶段有不同的含义,并且可以用“向下兼容”来形容首 先,“几个”是“几倍”的特例在整数乘法中,两者是等价的,这种思想可以让 学生更容易认识“几倍”;当得不到整数倍时,就出现了小数倍,这时“几个”是 “几倍”的一种特例,“乘法意义”也就开始了扩展其次,“一个数的几分之 几”也是“一个数的几倍”的特例当不到1倍时,我们就习惯于说“几分之 几”,而不说“几倍”,可见“几倍”和“几分之几”只是说法上的不同而已,本 质上却是一样的这种思想结合实例与直观能让学生更好地理解“一个数的几分之 几”的含义进而对“乘法意义”进行有效扩展在学习了百分数之后,“几倍”和 “几分之几”都可以用百分数来表示,这样,“乘法意义”的不同表述的统一性又 一次体现出来了由此可见,“乘法意义”具有阶段性,同时也具有统一性,这也 是必然的,因为都是“乘法”嘛!可是,我们过去的思想却一直停在一种不统一的 状态,或人为分裂状态。

从“单价X数量二总价”到“1倍数X几倍二几倍数”等各 种各样数量关系式及相应各种各样的题型中,常碰到这样的实例乘法意义”可以说是一个十分基本的概念,老教材和新教材在处理上可以说 是有很大的区别从上述分析中,我们不难看到新教材的更加科学的.一面和更加 有利于培养创新思维的一面愿各位同行能带着以上思想去审视新教材中的“乘法 意义”,以领悟更加完美的“乘法意义”,也让学生用全新的“乘法意义”更好地 掌握“乘除法应用题”(这里用“乘除法应用题”是因为本人看来“乘法”和“除 法”本身就是相对统一的)同时,我们也看到现行教材在分数乘法的意义等方面 还有所保守,但愿新教材能更加开放些,让“乘法意义”走向“统一”,让我们对 “乘法意义” 的认识更加接近它的本质乘法的意义3X5表示5个3相加5x3表示3个5相加注意:在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数另:乘法的新意义:乘法不是加法的简单记法一、 乘法原理:如果因变量f )与自变量(xl,x2,x3,.xn)之间存在直接正比关 系并且每个自变量存在质的不同,缺少任何一个自变量因变量f )就失去其意义, 则为乘法用n维空间描述就是,f为自变量为n个相互正交坐标轴上的自原点至xi之 间的线段与点(xl,x2,x3,.xn)和这n个线段垂线围成的空间体积。

二、 加法原理:如果因变量f )与自变量(zl,z2,z3,. zn)之间存在直接正比 关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f )仍然有其意 义,则为加法用n维空间描述就是,自变量为同一坐标轴上的n个自原点至zi之间的线 段,f为这n个线段首尾连接的总长度以上所说的质是按照自变量的作用来划分的此原理是逻辑乘法和逻辑加法的定量表述。

下载提示
相似文档
正为您匹配相似的精品文档