阻抗impedance在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗 阻抗的单位是欧阻抗是电阻与电抗在向量上的和正弦交变电路中阻抗大小表达式在电流中在电流中,物体对电流阻碍的作用叫做电阻除了超导体外,世界上所有的物质都有电阻,只是电阻值的大小差异而已电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值等于零的物质,不过它要求在足够低的温度和足够弱的磁场下,其电阻率才为零在直流电和交流电中,电阻对两种电流都有阻碍作用;作为常见元器件,除了电阻还有电容和电感,这两者对交流电和直流电的作用就不像电阻那样都有阻碍作用了电容是“隔直通交”,就是对直流电有隔断作用,就是直流不能通过,而交流电可以通过,而且随着电容值的增大或者交流电的增大,电容对交流电的阻碍作用越小,这种阻碍作用可以理解为“电阻”,但是不等同于电阻,这是一种电抗的,电抗和电阻单位一样,合称“阻抗”。
当然,准确的说,“阻抗”应该有三个部分,除了这两个,就是“感抗”感抗就是电感对电流的阻碍作用,和电容不同,电感对直流电无阻碍作用(如果严谨的研究的话,在通电达到饱和之前的那个短暂的几毫秒的暂态内,也是有阻碍的)对交流有阻碍作用,感抗的单位和容抗以及电阻的单位都一样是欧姆电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大当该串联电路达到谐振的时候,也就是阻抗减小到最小值在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反在音响器材中在音响器材中,扩音机与喇叭的阻抗多设计为8欧姆,因为在这个阻抗值下,机器有最佳的工作状态其实喇叭的阻抗是随着频率高低的不同而变动的,喇叭规格中所标示的通常是一个大略的平均值,现在市面上的产品大都是四欧姆、六欧姆或八欧姆。
耳机阻抗耳机的阻抗是其交流阻抗的简称,单位为欧姆(Ω)一般来说,阻抗越小,耳机就越容易出声、 越容易驱动耳机的阻抗是随其所重放的音频信号的频率而改变的,一般耳机阻抗在低频最大,因此对低频的衰减要大于高频的;对大多数耳机而言,增大输出阻抗会使声音更暗更混(此时功放对耳机驱动单元的控制也会变弱),但某些耳机却需要在高阻抗下才更好听如果耳机声音尖锐刺耳,可以考虑增大耳机插孔的有效输出阻抗;如果耳机声音暗淡浑浊,并且是通过功率放大器驱动的,则可以考虑减小有效输出电阻不同阻抗的耳机主要用于不同的场合,在台式机或功放、VCD、DVD、电视、电脑等设备上,常用到的是高阻抗耳机,有些专业耳机阻抗甚至会在200欧姆以上,这是为了与专业机上的耳机插口匹配,此时如果使用低阻抗耳机,一定先要把音量调低再插上耳机,再一点点把音量调上去,防止耳机过载将耳机烧坏或是音圈变形错位造成破音而对于各种便携式随身听,例如CD、MD或MP3,一般会使用低阻抗耳机(通常都在50欧姆以下),这是因为这些低阻抗耳机比较容易驱动,同时还要注意灵敏度要高,对随身听、MP3来说灵敏度指标更加重要当然,阻抗越高的耳机搭配输出功率大的音源时声音效果更好。
阻抗公式:Z= R+i( ΩL–1/(ΩC))说明负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学公式即是:阻抗Z= R+i( ΩL–1/(ΩC))其中R为电阻,ΩL为感抗,1/(ΩC)为容抗如果( ΩL–1/ΩC) > 0,称为“感性负载”;反之,如果( ΩL–1/ΩC) < 0称为“容性负载”匹配概述阻抗匹配(Impedance matching)在高频设计中是一个常用的概念,是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回到源点,从而提升能源效益大体上,阻抗匹配有两种,一种是通过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密斯图表上改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈走动如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重复以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿着图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配最大功率传输定理,如果是高频的话,就是无反射波对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了反之则在传输中有能量损失高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。
电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态对于不同特性的电路,匹配条件是不一样的在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反这种匹配条件称为共扼匹配阻抗匹配的研究在高速的设计中,阻抗的匹配与否关系到信号的质量优劣阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。
例如我们在系统中设计中,很多采用的都是源段的串连匹配对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1. 串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射 串联终端匹配后的信号传输具有以下特点:A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。
比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样可以看出,有一段时间负载端信号幅度为原始信号幅度的一半显然这时候信号处在不定逻辑状态,信号的噪声容限很低串联匹配是最常用的终端匹配方法它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件2. 并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很大的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的实现形式分为单电阻和双电阻两种形式并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播B 所有的反射都被匹配电阻吸收C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。
在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等假定传输线的特征阻抗为50Ω,则R值为50Ω如果信号的高电平为5V,则信号的静态电流将达到100mA由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:⑴. 两电阻的并联值与传输线的特征阻抗相等⑵. 与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大⑶. 与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗因而不适用于电池供电系统等对功耗要求高的系统另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。
当然还有:AC终端匹配; 基于二极管的电压钳位等匹配方式二、将讯号的传输看成软管送水浇花2.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花一端于手握处加压使其射出水柱,另一端接在水龙头当握管处所施压的力道恰好,而让水柱的射程正。