文档详情

信号及系统_复习知识总结

xmg****18
实名认证
店铺
DOC
555KB
约11页
文档ID:227856797
信号及系统_复习知识总结_第1页
1/11

重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号;周期信号和非周期信号; 能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率〔或周期的比值是有理分数时才是周期的其周期为各个周期的最小公倍数① 连续正弦信号一定是周期信号② 两连续周期信号之和不一定是周期信号周期信号是功率信号除了具有无限能量及无限功率的信号外,时限的或的非周期信号就是能量信号,当,的非周期信号是功率信号1. 典型信号① 指数信号: ,② 正弦信号: ③ 复指数信号: ,④ 抽样信号: 奇异信号(1) 单位阶跃信号是的跳变点2) 单位冲激信号〔当时单位冲激信号的性质:〔1取样性 相乘性质:〔2是偶函数〔3比例性 〔4微积分性质 ; 〔5冲激偶 ; ; 带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度正跳变对应着正冲激;负跳变对应着负冲激重难点2.信号的时域运算① 移位: , 为常数当>0时,相当于波形在轴上左移;当<0时,相当于波形在轴上右移。

② 反褶: 的波形相当于将以=0为轴反褶③ 尺度变换: ,为常数 当>1时,的波形时将的波形在时间轴上压缩为原来的;当0<<1时,的波形在时间轴上扩展为原来的④ 微分运算: 信号经微分运算后会突出其变化部分2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统;重难点3.系统的特性 (1) 线性性若同时满足叠加性与均匀性,则称满足线性性当激励为〔、分别为常数时,系统的响应为线性系统具有分解特性:零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数2) 时不变性 :对于时不变系统,当激励为时,响应为3) 因果性线性非时变系统具有微分特性、积分特性重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由初始状态确定零输入响应必然是自由响应的一部分重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即。

零状态响应可分解为自由响应和强迫响应两部分重难点7.单位冲激响应的求解冲激响应是冲激信号作用系统的零状态响应重难点8.卷积积分(1) 定义 (2) 卷积代数① 交换律 ② 分配率 ③ 结合律 重难点9.卷积的图解法 〔 求某一时刻卷积值卷积过程可分解为四步:〔1换元: t换为τ→得f1<τ>,f2<τ>〔2反转平移:由f2<τ>反转→f2<–τ> 右移t →f2〔3乘积:f1<τ> f2 〔4积分:τ从 –∞到∞对乘积项积分<3>性质1f*f = f 〔为常数2f*δ’ = f’ 3f*uu *u = tu456f1* f2 = f1* f2 = f1* f2 = f 7> 两个因果信号的卷积,其积分限是从0到t8系统全响应的求解方法过程归纳如下: a.根据系统建立微分方程; b.由特征根求系统的零输入响应; c.求冲激响应; d.求系统的零状态响应; e.求系统的全响应。

重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号〔为其周期可展开为傅里叶级数 <1>三角函数形式的傅里叶级数 式中,为正整数直流分量余弦分量的幅度正弦分量的幅度三角函数形式的傅里叶级数的另一种形式为〔2指数形式的傅里叶级数 式中,为从到的整数复数频谱利用周期信号的对称性可以简化傅里叶级数中系数的计算从而可知周期信号所包含的频率成分有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项重难点11.从对周期矩形脉冲信号的分析可知:<1> 信号的持续时间与频带宽度成反比;<2> 周期T越大,谱线越密,离散频谱将变成连续频谱;<3> 周期信号频谱的三大特点:离散性、谐波性、收敛性重难点12.傅里叶变换傅里叶变换定义为正变换逆变换频谱密度函数一般是复函数,可以写作 其中是的模,它代表信号中个频谱分量的相对大小,是的偶函数是的相位函数,它表示信号中各频率分量之间的相位关系,是的奇函数。

常用函数 F 变换对:δ112πδ<ω>u e -atu sgn e –a|t|重难点13.傅里叶变换的基本性质1 线性特性2 对称特性 3 展缩特性4 时移特性5 频移特性 6 时域卷积特性7 频域卷积特性 8 时域微分特性 9 积分特性10.频域微分特性11>奇偶虚实性若,则①是实偶函数,即为的实偶函数②是实奇函数,即为的虚奇函数重难点14.周期信号的傅里叶变换周期信号的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频处,每个冲激的强度等于的傅里叶级数的相应系数的倍即重难点15.冲激抽样信号的频谱 冲激抽样信号的频谱为其中为抽样周期,为被抽样信号的频谱上式表明,信号在时域被冲激序列抽样后,它的频谱是连续信号频谱以抽样频谱为周期等幅地重复重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得其方法为:<1> 求激励f的傅里叶变换F<2> 求频域系统函数H<3> 求零状态响应yzs的傅里叶变换Yzs,即Yzs= H F

<4> 求零状态响应的时域解,即yzs= F-1[Yzs]重难点17.对于线性非时变稳定系统,若输入为正弦信号,则稳态响应为其中,为频域系统函数重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,是输入信号的频谱,即的指数傅里叶级数的复系统是系统函数,W为基波是输出信号的频谱时间响应为重难点19.在时域中,无失真传输的条件是 在频域中,无失真传输系统的特性为 20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器理想滤波器是非因果性的,物理上不可实现的重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率<带宽>成反比重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:〔1f必须是带限信号;〔2取样频率不能太低,必须fs≥2fm,或者说,取样间隔不能太大,必须Ts≤1/<2fm>;否则将发生混叠通常把最低允许的取样频率fs=2fm称为奈奎斯特〔Nyquist>频率;把最大允许的取样间隔Ts=1/<2fm>称为奈奎斯特间隔。

重难点23.单边拉氏变换的定义为积分下限定义为因此,单位冲激函数,求解微分方程时,初始条件取为重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S平面上的取值范围称为拉氏变换的收敛域是有限长时,收敛域整个S平面;是右边信号时,收敛域的右边区域;是左边信号时,收敛域的左边区域;是双边信号时,收敛域是S平面上一条带状区域要说明的是,我们讨论单边拉氏变换,只要取得足够大总是满足绝对可积条件,因此一般不写收敛域单边拉氏变换,只要取得足够大总是满足绝对可积条件,因此一般不写收敛域重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换重难点26.拉普拉斯变换的性质〔6时域卷积定理 f1*f2 ←→F1F2 〔7周期信号,只要求出第一周期的拉氏变换,频域微分性:频域积分性:初值定理:终值定理若f当t→∞时存在,并且f ←→F , Re[s]>s0, s0<0,则拉氏变换的性质及应用 一般规律:有t相乘时,用频域微分性质 有实指数相乘时,用频移性质 分段直线组成的波形,用时域微分性质 周期信号,只要求出第一周期的拉氏变换,由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理。

重难点27.拉普拉斯反变换求解:〔掌握部分分式展开法求解拉普拉斯逆变换的方法〔1单实根时 〔2二重根时 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S域代数方程,求出响应的象函数,再对其求反变换得到系统的响应 重难点29.动态电路的S域模型:由时域电路模型能正确画出S域电路模型,是用拉普拉斯变换分析电路的基础引入复频域阻抗后,电路定律的复频域形式与其相量形式相似重难点30.系统的零状态响应为 其中,,是冲激响应的象函数,称为系统函数系统函数定义为 重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H<>与时域响应h<>:LTI连续因果系统的h的函数形式由H的极点确定 ①H在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的结论:极点全部在左半开平面的系统〔因果是稳定的系统②H在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数H在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大。

tPi位于右半平面减幅的自由振荡P为负实根P为正实根P位于虚轴上衰减的指数函数增长的指数函数等幅正弦振荡增幅的自由振荡③H在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的重难点34.系统的稳定性:稳定系统 H的极点都在左半开平面,边界稳定系统 H的极点都在虚轴上,且为一阶, 不稳定系统 H的极点都在右半开平面或虚轴上二阶以上H =判断准则:1多项式的全部系数符号相同为正数;2无缺项;3对三阶系统,的各项系数全为正,且满足重难点35、常用的典型信号1.单位抽样序列的延迟形式: 。

下载提示
相似文档
正为您匹配相似的精品文档