前n个正整数的平方和公式的推导已知,(n+1)^3=n^3+3n^2+3n+1所以 (n+1)^3-n^3=3n^2+3n+1依次有n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 (n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1 (n-2)^3-(n-3)^3=3(n-3)^2+3(n-3)+1 ……………………………… 3^3-2^3=3*2^2+3*2+1 2^3-1^3=3*1^2+3*1+1以上的n个等式的两边分别相加得到:(n+3)^3-1=3(1^2+2^2+3^2+……+n^2)+3(1+2+3+……+n)+(1+1+……+1)所以(n+1)^3-1=3(1^2+2^2+……+n^2)+3n(n+1)/2+n因此 1^2+2^2+3^2+……+n^2=[(n^3+3n^2+3n)-3n(n+1)/2-n]/3=(2n^3+3n^2+n)/6=n(n+1)(2n+1)/6 平方和公式n(n+1)(2n+1)/6 即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:n^2=n的平方) 编辑本段证明方法证法一 (归纳猜想法): 1、N=1时,1=1(1+1)(2×1+1)/6=1 2、N=2时,1+4=2(2+1)(2×2+1)/6=5 3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6 则当N=x+1时, 1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2 =(x+1)[2(x2)+x+6(x+1)]/6 =(x+1)[2(x2)+7x+6]/6 =(x+1)(2x+3)(x+2)/6 =(x+1)[(x+1)+1][2(x+1)+1]/6 也满足公式 4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证。
证法二 (利用恒等式(n+1)^3=n^3+3n^2+3n+1) : (n+1)^3-n^3=3n^2+3n+1, n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 .............................. 3^3-2^3=3*(2^2)+3*2+1 2^3-1^3=3*(1^2)+3*1+1. 把这n个等式两端分别相加,得: (n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n, 由于1+2+3+...+n=(n+1)n/2, 代入上式得: n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n 整理后得: 1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6 a^2+b^2=a(a+b)-b(a-b) 证法三 (见下图): 证法四 (排列组合法,见下图): 1。