河北工业大学 硕士学位论文 1,1,3,3-四甲基-2-环己基胍的合成及其在ADC合成反应中的 应用 姓名:孙潇磊 申请学位级别:硕士 专业:化学工艺 指导教师:赵新强 20080301 1,1,3,3-四甲基-2-环己基胍的合成及其在 ADC 合成反应中的应用 ii PREPARATION OF N-CYCLOHEXYL-N’,N’,N”,N”- TETRAMETHYL GUANIDINE AND ITS APPLICATION IN THE REACTION FOR SYNTHESIS OF ADC ABSTRACT Guanidine is an organic strong base and is used as a basic catalyst or promoter in many reactions. In this thesis, N-cyclohexyl-N’,N’,N’’,N’’-tetramethylguanidine (CyTMG) was synthesized starting from tetramethylurea (TMU) and cyclohexylamine in the presence of phosphorus oxychloride (POCl3) catalyst and its structure was characterized. Then the reaction performance of CyTMG in the reaction for synthesis of diethylene glycol diallyl dicarbonate (ADC) separately by carbon dioxide route and transesterification route was evaluated. Finally a series of N’,N’,N”,N”-tetramethyl-N–methyl-N-cyclohexylguanidinium ionic liquids were synthesized. The preparation condition of CyTMG was optimized by orthogonal design. Under the following conditions: n(TMU):n(POCl3) 1:1,the reaction time after the addition of phosphorus oxychloride 11h,the reaction time after the addition of cyclohexylamine 36h, and the reaction time after the addition of water 15 minutes, the yield of CyTMG was 50.1%. And the structure of CyTMG was characterized by means of IR, 1H-NMR and ESI-MS. In the carbon dioxide route to ADC synthesis, CyTMG not only showed a good catalytic activity but also served as an acid-binding agent to absorb HCl produced during the reaction. By so doing a huge amount of solid waste generated in the traditional route was avoided and the process for ADC synthesis became much cleaner. The catalyst weight percentage, reaction initial pressure, mole ratio of materials, reaction temperature and reaction time were optimized. Under the following conditions: reaction temperature 80, reaction initial pressure℃ 4.0MPa, the molar ratio of allyl chloride to diethylene glycol 6:1, the molar ratio of diethylene glycol to CyTMG 3.4:1, and reaction time 12h, the yield of ADC attained 63.0%. Additionally the recovery of CyTMG was 80.4%. In the transesterification route to ADC synthesis, CyTMG also had excellent catalytic activity. The reaction conditions were optimized and the product distribution in the reaction was discussed. Under the conditions of the first-step reaction temperature 86-100, the second℃-step reaction temperature 100-120, vacuum degree 0.07MPa, the first℃-step reaction time 4h, the 河北工业大学硕士学位论文 iii second-step reaction time 3h, n(DEG):n(DMC):n(AAH)= 0.08:1:2, and catalyst weight percentage 4.0%, the yield of ADC was 80.3%. Several N’,N’,N”,N”-tetramethyl-N–methyl-N-cyclohexylguanidinium ionic liquids were synthesized and their structures were characterized by means of IR, 1H-NMR and 13C-NMR. The acidity and basicity of the ionic liquids were measured by the method of Hammett indicator combined with ultraviolet-visible absorption spectroscopy. Among them, the acidity of [MCyTMG]PF6 was the lowest and [MCyTMG]I was the strongest. KEY WORDS: tetramethylurea, cyclohexylamine, N-cyclohexyl-N’,N’,N’’,N’’ –tetramethyl guanidine, diethylene glycol diallyl dicarbonate, N’,N’,N”,N”-tetramethyl-N–methyl-N- cyclohexylguanidinium ionic liquids, dimethyl carbonate 河北工业大学硕士学位论文 1 第一章第一章第一章第一章 绪论绪论绪论绪论 § 1-1 前言前言前言前言 胍是一种强有机碱,在许多反应中被用作碱性催化剂或助剂。
近年来,胍在化学及医药方面的应用 越来越多, 特别是在不对称合成方面的应用引起了人们很大的兴趣 二甘醇双烯丙基碳酸酯 (diethylene glycol bis (allyl carbonate), 简称ADC) 是一种重要的高分子聚合 物单体,其共聚物通常称为CR-39,具有高透光性和良好的物理机械性能,在光学仪器和国防工业中得 到了广泛应用目前,ADC的工业生产主要以光气法为主,因此开发ADC的洁净合成方法具有重要的 理论意义和应用价值 § 1-2 有机胍及其离子液体有机胍及其离子液体有机胍及其离子液体有机胍及其离子液体 1-2-1 有机胍的合成方法有机胍的合成方法有机胍的合成方法有机胍的合成方法 1-2-1-1 胺(氨)与胍基化试剂合成法 胍可由胺(氨)与腈胺[1,2] 、 异硫氰酸酯及异硫脲[4-5 ] 、 氨基亚胺甲磺酸[6,7 ]等胍基化试剂作用来合成 咪类胍基化试剂的应用使反应活性提高,纯化方法简单,提高了胍的产率[8] 1-2-1-2 酰基保护合成法 上世纪末使用酰基保护合成胍的方法发展很快 酰基如烷氧羰基(Boc,Cbz)和三氟甲磺酰基(Tf) [9-12] 可在温和条件下脱去保护基生成游离胍。
Cody等[13]曾用2 ,3 ,6-三甲基苯磺酰基(Mtr)和2 ,2 ,5 ,7 ,8-五甲 基苯并二氢吡喃磺酰基(Pmc) 作保护基合成胍,但脱除保护基的条件比较苛刻 Kozikowski等[14]用双保护的胍基化试剂1和2实现了由醇到胍的转变,反应产率一般大于90%反应 方程式如下: 1 2 1,1,3,3-四甲基-2-环己基胍的合成及其在 ADC 合成反应中的应用 2 Goodman小组[15]以盐酸胍为原料制得三保护的胍3和4, 亦实现了从醇到胍的转变 这一方法为精氨 酸类似物的合成开辟了又一条新途径,反应中氨基酸α-碳的手性不受影响 3 4 1-2-1-3 卤代烷合成法 有关由卤代烷制胍的研究报道比较少Vaidyanathan和Zalutsky[16]以各种溴代烷制得保护胍,产率 适中反应式如下: 该反应只适用于伯溴代烃对于仲溴代烃,碱性条件下消去反应优于取代反应,所以没有烷基取代 胍生成 1-2-1-4 氰胺合成法 (1) 单氰胺合成法 由单氰胺与胺、多胺、肼、羟胺、氨基酸等加成是制备烷基胍、芳基胍、氨基胍最常用的工业合成 方法。
黄春华等[17 ,18]用氰胺、 十二胺(或十八胺) 和醋酸反应制取醋酸十二胍(或十八胍) 反应式如下[式 中R为CH3(CH2)11、CH3(CH2)17]: (2)双氰胺合成法 双氰胺是制备双胍化合物的主要原料在五水硫酸铜存在的条件下,双氰胺与乙胺、正丙胺、正丁 胺、正戊胺、正己胺反应可以合成相应的烷基双胍盐卢安军等[19]用双氰胺与正丁胺在硫酸铜作用下 成功合成了正丁基双胍硫酸盐反应式如下: Kokai等[20]发现在氨气存在下,用双氰胺和氨基磺酸铵反应可以合成氨基磺酸胍,该法原料易得且 价格便宜反应式如下: 1-2-1-5 硫脲类合成法 S-烷基异硫脲同胺类的反应是制备烷基胍的经典方法该方法也适合制备环状化合物,然而不足之 处是须除去副产物烷基硫醇 河北工业大学硕士学位论文 3 为了避免生成污染环境的烷基硫醇, 潘志信等[21]用三氧化硫脲与十二胺反应合成了重十二胍亚硫 酸盐反应式如下: 潘志信等[22-23]还用三氧化硫脲与水合肼作用合成了氨基胍, 将壳聚糖用三氧化硫脲进行胍化, 合成 了甲壳胍的盐 1-2-1-6 三氯氧磷法 在许多文献中, 胍及其盐由四烷基脲(硫脲)、光气和胺反应来制备。
由于光气的剧毒性及低温反应 条件使其应用受到限制,因此需要寻找“绿色”的合成方法为了避免使用光气, 胍及其盐通常是由四烷 基脲(硫脲)、三氯氧磷、草酰氯等和胺反应来制备[5 ,8]段海峰等[24]以四烷基脲(硫脲)为原料,分别用。