单击此处编辑母版标题样式单击此处编辑母版副标题样式* *1 1Chapter 21 生物氧化 生物氧化概念 生物氧化的特点 生物氧化的本质及过程 NADH和FADH2的彻底氧化一、生物氧化概念 有机物在生物体内的氧化包括物质分解和产能呼吸作用O2CO2 + H2O细胞呼吸(微生物)二、生物氧化的特点1.生物氧化是在生物细胞内进行的酶促氧化过程,反应条件温和(水溶液,中性pH和常温)2.氧化进行过程中,必然伴随生物还原反应的3. 发生3.水是许多生物氧化反应的氧供体通过加水脱氢作用直接参予了氧化反应4.在生物氧化中,碳的氧化和氢的氧化是非同步进行的氧化过程中脱下来的氢质子和电子,通常由各种载体,如NADH等传递到氧并生成水1.本质 生物氧化的本质是电子的得失,失电子者为还原剂,是电子供体,得电子者为氧化剂,是电子受体.在生物体内,它有三种方式:l加氧氧化l电子转移 三、生物氧化的本质及过程O2苯丙氨酸苯丙氨酸 酪氨酸酪氨酸乳酸脱氢酶n n 脱氢氧化脱氢氧化l 在无氧条件下,兼性生物或厌气生物能利用细胞中的氧化型物质作为电子受体,将燃料分子氧化分解,这称为无氧氧化这些生物有的以有机物分子作为最终的氢受体(如厌氧发酵),有的则以无机物分子作为氢受体(如微生物中的化能自养菌对NO3-、SO42-的利用)。
2. 无氧氧化 3. 有氧氧化 生物氧化在有氧和无氧条件下都能进行在有氧条件下,好气生物或兼性生物吸收空气中的氧作为电子受体,可将燃料分子完全氧化分解,这称为有氧氧化因为有氧氧化燃烧完全,产能多,所以,只要有氧气存在,细胞都优先进行有氧氧化4.生物能及其存在形式生物能和ATPlATP是生物能存在的主要形式lATP是能够被生物细胞直接利用的能量形式l生物化学反应与普通的化学反应一样,也服从热力学的规律高能化合物n生物体通过生物氧化所产生的能量,除一部分用以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物ATP中l根据生物体内高能化合物键的特性可以把他们分成以下几种类型:磷氧键型a) 酰基磷酸化合物3-磷酸甘油酸磷酸乙酰磷酸10.1千卡/摩尔11.8千卡/摩尔氨甲酰磷酸酰基腺苷酸氨酰基腺苷酸b)焦磷酸化合物ATP(三磷酸腺苷)焦磷酸7.3千卡/摩尔c)烯醇式磷酸化合物磷酸烯醇式丙酮酸14.8千卡/摩尔氮磷键型磷酸肌酸磷酸精氨酸10.3千卡/摩尔7.7千卡/摩尔这两种高能化合物在生物体内起储存能量的作用硫酯键型3-磷酸腺苷-5-磷酸硫酸酰基辅酶A甲硫键型S-腺苷甲硫氨酸四、四、NADHNADH和和FADHFADH2 2的彻底氧化的彻底氧化(末端电子传递链)(末端电子传递链)1. 在生物体内NADH和FADH2的彻底氧化可以产生大量的能量,这一过程是通过呼吸链来完成的。
1)概念及位置l呼吸链又叫电子传递体系或电子传递链,它是代谢物上的氢原子被脱氢酶激活脱落后,分解为H+和e-, e-经过一系列的传递体,最后传递给O2, O2被激活成活性的氧原子,与H+结合而生成水的全部体系在真核生物细胞内,它位于线粒体内膜上,原核生物中,它位于细胞膜上2.2.呼吸链呼吸链respiratory chainrespiratory chain( (电子传递链电子传递链 electron transport chain)electron transport chain)线粒体呼吸链(2)组成 呼吸链由许多个组分组成,参加呼吸链的氧化还原酶有烟酰胺脱氢酶类、黄素脱氢酶类、铁硫蛋白类、细胞色素类、辅酶Q类等l NADH:还原型辅酶Il它是由NAD+接受多种代谢产物脱氢得到的产物NADH所携带的高能电子是线粒体呼吸链主要电子供体之一l铁硫蛋白(简写为Fe-S)是一种与电子传递有关的蛋白质,它与NADHQ还原酶的其它蛋白质组分结合成复合物形式存在它主要以 (2Fe-2S) 或 (4Fe-4S) 形式存在2Fe-2S)含有两个活泼的无机硫和两个铁原子铁硫蛋白通过Fe3+ Fe2+ 变化起传递电子的作用铁硫蛋白铁硫蛋白 NADH泛醌还原酶l简写为NADHQ还原酶, 即复合物I,它的作用是催化NADH的氧化脱氢以及Q的还原。
所以它既是一种脱氢酶,也是一种还原酶 NADHQ还原酶最少含有16个多肽亚基它的活性部分含有辅基FMN和铁硫蛋白lFMN的作用是接受脱氢酶脱下来的电子和质子,形成还原型FMNH2还原型FMNH2可以进一步将电子转移给Ql NADHQ还原酶l NADH + Q + H+ = NAD+ + QH2NADHNADH 泛醌还原酶泛醌还原酶l(简写为Q)或辅酶-Q(CoQ):它是电子传递链中唯一的非蛋白电子载体为一种脂溶性醌类化合物 泛醌泛醌l简写为QH2-cyt. c还原酶, 即复合物III, 它是线粒体内膜上的一种跨膜蛋白复合物,其作用是催化还原型QH2的氧化和细胞色素c(cyt. c)的还原 QH2-cyt. c 还原酶lQH2 + 2 cyt. c (Fe3+) = Q + 2 cyt. c (Fe2+) + 2H+l QH2-cyt. c还原酶由9个多肽亚基组成活性部分主要包括细胞色素b 和c1,以及铁硫蛋白(2Fe-2S) 泛醌泛醌 细胞色素细胞色素c c还原酶还原酶l(简写为cyt. )是含铁的电子传递体,辅基为铁卟啉的衍生物,铁原子处于卟啉环的中心,构成血红素各种细胞色素的辅基结构略有不同。
线粒体呼吸链中主要含有细胞色素a, b, c 和c1等,组成它们的辅基分别为血红素A、B和C细胞色素a, b, c可以通过它们的紫外-可见吸收光谱来鉴别l 细胞色素主要是通过Fe3+ Fe2+ 的互变起传递电子的作用的细胞色素l它是电子传递链中一个独立的蛋白质电子载体,位于线粒体内膜外表,属于膜周蛋白,易溶于水它与细胞色素c1含有相同的辅基,但是蛋白组成则有所不同在电子传递过程中,cyt. c通过 Fe3+ Fe2+ 的互变起电子传递中间体作用 细胞色素细胞色素c c(cyt.ccyt.c)l简写为cyt. c 氧化酶,即复合物IV,它是位于线粒体呼吸链末端的蛋白复合物,由12个多肽亚基组成活性部分主要包括cyt. a和a3 细胞色素细胞色素c c氧化酶氧化酶lcyt.a和a3组成一个复合体,除了含有铁卟啉外,还含有铜原子cyt.a a3可以直接以O2为电子受体l在电子传递过程中,分子中的铜离子可以发生 Cu+ Cu2+ 的互变,将cyt.c所携带的电子传递给O2l琥珀酸是生物代谢过程(三羧酸循环)中产生的中间产物,它在琥珀酸-Q还原酶(复合物II)催化下,将两个高能电子传递给Q再通过QH2-cyt, c还原酶、cyt.c和cyt.c氧化酶将电子传递到O2。
l琥珀酸-Q还原酶也是存在于线粒体内膜上的蛋白复合物, 它比NADH-Q还原酶的结构简单,由4个不同的多肽亚基组成其活性部分含有辅基FAD和铁硫蛋白l琥珀酸-Q还原酶的作用是催化琥珀酸的脱氢氧化和Q的还原琥珀酸-Q还原酶(3)作用l 呼吸链的作用是接受还原性辅酶上的氢原字对(2H+2e),使辅酶分子氧化,并将电子对顺序传递,直至激活分子氧,使氧负离子(O2-)与质子对(2H+)结合,生成水电子对在传递过程中逐步氧化放能,所释放的能量驱动ADP和无机磷发生磷酸化反应,生成ATPl 在生物氧化过程中,氧化放能反应常常有吸能的磷酸化反应偶联发生偶联反应将氧化释放的一部分自由能用于无机磷参加的高能磷酸键生成反应这种氧化放能反应与磷酸化吸能反应的偶联,称为氧化磷酸化作用根据生物氧化方式,可将氧化磷酸化分为底物水平磷酸化及电子传递体系磷酸化3.氧化磷酸化oxidatire phosphorylationl底物水平磷酸化是在被氧化的底物上发生磷酸化作用即底物被氧化的过程中,形成了某些高能磷酸化合物的中间产物,通过酶的作用可使ADP生成ATPl电子传递体系磷酸化是指当电子从NADH或FADH2经过电子传递体系(呼吸链)传递给氧形成水时,同时伴有ADP磷酸化为ATP的全过程。
通常所说的氧化磷酸化是指电子传递体系磷酸化l 研究氧化磷酸化最常用的方法是测定线粒体或其制剂的P/O比值和电化学实验P/O比值是指每消耗一摩尔氧所消耗无机磷酸的摩尔数根据所消耗的无机磷酸摩尔数,可间接测出ATP生成量实验指明NADH呼吸链的P/O值是2.5,即每消耗一摩尔氧原子就可形成2.5摩尔ATP,FADH2呼吸链的P/O值是1.5,即消耗一摩尔氧原子可形成1.5摩尔ATP1)ATP产生的数量l ATP产生的部位都是有大的电位差变化的地方,例如,NADH呼吸链生成ATP的三个部位是:E0值在此三个部位有大的“跳动”,都在0.2伏以上2)ATP产生的部位 氧化与磷酸化作用如何耦联尚不够清楚,目前主要有三个学说:l化学耦联学说、结构耦联学说与化学渗透学说,l化学渗透学说的主要论点l呼吸链存在于线粒体内膜之上,当氧化进行时,呼吸链起质子泵作用,质子被泵出线粒体内膜之外侧,造成了膜内外两侧间跨膜的化学电位差,后者被膜上ATP合成酶所利用,使ADP与Pi合成ATP3)ATP产生的机理l抑制剂 电子传递链 抑制ATP合成l解偶联剂 (uncouplers) 2,4-二硝基苯酚(2,4-dinitrophenol DNP)(4) 氧化磷酸化的抑制剂和解偶联剂本章小结1. 生物氧化的概念与作用2. NADH,FADH2的彻底氧化3. 呼吸链(电子传递链)4. 磷酸化组成与存在位点,作用机制,抑制剂底物水平磷酸化,氧化磷酸化,ATP产生的数量与位置,解偶联剂。