word初一数学下册知识点复习梳理归纳第一章:整式的运算一、知识框架单项式 整 式多项式整 式 的 运 算同底数幂的乘法幂的乘方积的乘方 幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式二、知识概念一、单项式1、都是数字与字母的乘积的代数式叫做单项式2、单项式的数字因数叫做单项式的系数3、单项式中所有字母的指数和叫做单项式的次数二、多项式1、几个单项式的和叫做多项式2、多项式没有系数的概念,但有次数的概念3、多项式中次数最高的项的次数,叫做这个多项式的次数三、整式1、单项式和多项式统称为整式四、整式的加减1、整式加减的理论根据是:去括号法如此,合并同类项法如此,以与乘法分配率五、同底数幂的乘法1、n个一样因式〔或因数〕a相乘,记作an,读作a的n次方〔幂〕,其中a为底数,n为指数,an的结果叫做幂2、底数一样的幂叫做同底数幂3、同底数幂乘法的运算法如此:同底数幂相乘,底数不变,指数相加即:am﹒an=am+n4、此法如此也可以逆用,即:am+n = am﹒an。
六、幂的乘方1、幂的乘方是指几个一样的幂相乘〔am〕n表示n个am相乘2、幂的乘方运算法如此:幂的乘方,底数不变,指数相乘〔am〕n =amn3、此法如此也可以逆用,即:amn =〔am〕n=〔an〕m七、积的乘方1、积的乘方是指底数是乘积形式的乘方2、积的乘方运算法如此:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘即〔ab〕n=anbn3、此法如此也可以逆用,即:anbn =〔ab〕n九、同底数幂的除法1、同底数幂的除法法如此:同底数幂相除,底数不变,指数相减,即:am÷an=am-n〔a≠0〕2、此法如此也可以逆用,即:am-n = am÷an〔a≠0〕十、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1〔a≠0〕十一、负指数幂1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:十二、整式的乘法〔一〕单项式与单项式相乘1、单项式乘法法如此:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式〔二〕单项式与多项式相乘1、单项式与多项式乘法法如此:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc〔三〕多项式与多项式相乘1、多项式与多项式乘法法如此:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加即:(m+n)(a+b)=ma+mb+na+nb十三、平方差公式1、〔a+b〕(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差2、平方差公式中的a、b可以是单项式,也可以是多项式3、平方差公式可以逆用,即:a2-b2=〔a+b〕(a-b)4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成〔a+b〕•(a-b)的形式,然后看a2与b2是否容易计算十四、完全平方公式1、即:两数和〔或差〕的平方,等于它们的平方和,加上〔或减去〕它们的积的2倍2、公式中的a,b可以是单项式,也可以是多项式3、掌握理解完全平方公式的变形公式:〔1〕〔2〕〔3〕4、完全平方式:我们把形如:的二次三项式称作完全平方式5、完全平方公式可以逆用,即:十五、整式的除法〔一〕单项式除以单项式的法如此1、单项式除以单项式的法如此:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,如此连同它的指数一起作为商的一个因式。
〔二〕多项式除以单项式的法如此1、多项式除以单项式的法如此:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加用字母表示为:第二章 平行线与相交线一、知识框架余角余角补角补角 角两线相交对顶角平行线与相交线同位角三线八角内错角同旁内角平行线的判定 平行线平行线的性质 尺规作图二、知识概念一、平行线与相交线平行线:在同一平面内,不相交的两条直线叫做平行线假如两条直线只有一个公共点,我们称这两条直线为相交线二、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角三、对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角3、对顶角的性质:对顶角相等四、垂线与其性质1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线2、垂线的性质:性质1:过一点有且只有一条直线与直线垂直性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线的同侧,并且在第三条直线〔截线〕的同旁,这样的一对角叫做同位角3、内错角:两个角都在两条直线之间,并且在第三条直线〔截线〕的两旁,这样的一对角叫做内错角4、同旁内角:两个角都在两条直线之间,并且在第三条直线〔截线〕的同旁,这样的一对角叫同旁内角六、六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的2、余角、补角只有数量上的关系,与其位置无关3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关4、对顶角既有数量关系,又有位置关系七、平行线的判定方法1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行八、平行线的性质1、两直线平行,同位角相等2、两直线平行,内错角相等3、两直线平行,同旁内角互补4、平行线的判定与性质具备互逆的特征,其关系如下:第三章 变量之间的关系一、知识框架 自变量 变量的概念 因变量变量之间的关系 表格法 关系式法 变量的表达方法 速度时间图象 图象法 路程时间图象二、知识概念一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,如此把x叫做自变量,y叫做因变量3、自变量与因变量确实定:〔1〕自变量是先发生变化的量;因变量是后发生变化的量〔2〕自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系〔1〕首先要明确表格中所列的是哪两个量;〔2〕分清哪一个量为自变量,哪一个量为因变量;2、绘制表格表示两个变量之间关系〔1〕列表时首先要确定各行、各列的栏目;〔2〕一般有两行,第一行表示自变量,第二行表示因变量;三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量〔用字母表示〕的代数式表示因变量〔也用字母表示〕,这样的数学式子〔等式〕叫做关系式2、关系式的写法不同于方程,必须将因变量单独写在等号的左边四、图象1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象2、图象能清楚地反映出因变量随自变量变化而变化的情况3、用图象表示变量之间的关系时,通常用水平方向的数轴〔又称横轴〕上的点表示自变量,用竖直方向的数轴〔又称纵轴〕上的点表示因变量五、速度图象1、弄清哪一条轴〔通常是纵轴〕表示速度,哪一条轴〔通常是横轴〕表示时间;六、路程图象1、弄清哪一条轴〔通常是纵轴〕表示路程,哪一条轴〔通常是横轴〕表示时间;七、三种变量之间关系的表达方法与特点:表达方法特 点表格法多个变量可以同时出现在同一X表格中关系式法准确地反映了因变量与自变量的数值关系图象法直观、形象地给出了因变量随自变量的变化趋势第四章 三角形一、知识框架三角形三边关系 三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL〔适用于RtΔ〕全等三角形的应用利用全等三角形测距离作三角形二、知识概念一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ〞表示。
2、顶点是A、B、C的三角形,记作“ΔABC〞,读作“三角形ABC〞二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边用字母可表示为a+b>c,a+c>b,b+c>a;a-b
〔2〕三角形有三条中线,它们相交于三角形内一点4、三角形的高线:〔1〕从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高〔2〕任意三角形都有三条高线,它们所在的直线相交于一点区 别相 同中 线平分对边三条中线交于三角形内部〔1〕都是线段〔2〕都从顶点画出〔3〕所在直线相交于一点角平分线平分内角三条角平分线交于三角表内部高 线垂直于对边〔或其延长线〕锐角三角形:三条高线都在三角形内部直角三角形:其中两条恰好是直角边钝角三角形:其中两条在三角表外部五、全等图形1、两个能够重合的图形称为全等图形2、全等图形的性质:全等图形的形状和大小都一样3、全等图形的面积或周长均相等七、全等三角形1、能够重合的两个三角形是全等三角。