水体溶解氧检测方法综述戴文源 孙力(安徽农业大学信息与计算机学院 合肥 230036)摘 要 :本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、 电流测定法(Clark溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优 缺点,对荧光淬灭法的应用前景进行了初步探讨关键词:溶解氧、荧光淬灭、环境监测0.引言随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖 海排放,同时,我国城市生活污水大约有 80%未经处理直接排放,小城镇及广大 农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染 和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理其中, 水中溶解氧含量是进行水质监测时的一项重要指标溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的02, 用DO表示溶解氧是水生生物生存不可缺少的条件溶解氧的一个来源是水中 溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作 用释放出的氧溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越 高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。
溶解 氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水 中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗所以说 溶解氧是水体的资本,是水体自净能力的表示天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降水体受有机物及还原性物质污 染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存 有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人 类来说,健康的饮用水中溶解氧含量不得小于6mg/L当溶解氧(DO )消耗速 率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以 繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物 污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]因此, 水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义1.水体溶解氧的各种检测方法及原理1.1 碘量法(GB7489-87)(Iodometric)碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法, 使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。
其原理是在 水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀此时氢氧化锰性质极不稳 定,迅速与水中溶解氧化合生成锰酸锰:4MnS0 4+8NaOH = 4Mn(0H)2 J +4Na2S04 (1)2Mn(OH)2+O2 = 2H2MnO 3 (2)2H2MnO 3+2Mn(OH)3= 2MnMnO 3+4H2O (3)2 3 3 3 2加入浓硫酸使已化合的溶解氧(以 MnMnO 3 的形式存在)与溶液中所加入的碘 化钾发生反应而析出碘:4KI+2H2SO4 = 4HI+22KSO4 (4)2MnMnO 3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化 学方程式为:2Na 2S2 O 3+I2 = Na2S4O6+4NaI (6)设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所 取水样体积(mL), DO可按下式计算⑵:DO (mol/L)= (7)在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱 和度两倍(约20mg/L )的水样。
当水中可能含有亚硝酸盐、铁离子、游离氯时, 可能会对测定产生干扰,此时应采用碘量法的修正法具体作法是在加硫酸锰和 碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠 溶液加于水样中,Fe3+较高时,加入KF络合掩敝碘量法适用于水源水,地面水 等清洁水碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其 测量不确定度为0.19mg/L【4]但该法是一种纯化学检测方法,耗时长,程序繁琐, 无法满足测量的要求[5]同时易氧化的有机物,如丹宁酸、腐植酸和木质素 等会对测定产生干扰可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧 的呼吸系统那样产生干扰当含有这类物质时,宜采用电化学探头法[6],包括下面 将要介绍的电流测定法以及电导测定法等1.2电流测定法(Clark溶氧电极)当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定 法电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含 量溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在 阴极(正极)上发生还原反应:O2+2H2O+4e T 4OH- ⑻在阳极(负极),如银-氯化银电极上发生氧化反应:4Ag+4Cl- T 4AgCl+4e (9)(8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解 氧(DO)的浓度。
电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、 浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于 它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物 质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极 本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗 氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且 需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制目 前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也 要经常更换张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标 准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L, 变异系数为 4.81%同碘量法做对比实验时,每个样品测定值绝对误差小于 0.21mg/L,相对误差不超过2.77%,两种方法相对误差在一2.52%〜2.77%之间 代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪, 该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。
测量 范围为0〜20mg/L,精度为土0.03mg/L1.3 荧光猝灭法荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液 所发生的荧光的强度来测定试样溶液中荧光物质的含量通过利用光纤传感器来 实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火 花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优 点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感 器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测从 80 年代初 起,人们已开始了探索应用于氧探头的荧光指示剂的工作早期曾采用四烷基氨 基乙烯为化学发光剂,但由于其在应用中对氧气的响应在 12 小时内逐渐衰减而 很快被淘汰芘、芘丁酸、氟蒽等是一类很好的氧指示剂[8],如 1984 年 Wolfbeis 等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多 孔玻璃这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性 1989年,Philip等[巧将香豆素1、香豆素103、香豆素153三种荧光指示剂分别 固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。
从灵敏度、 发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体 中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论使用这种荧光 指示剂的光纤氧传感器的应用范围相当广泛后来过渡金属(Ru、Os、Re、Rh和lr)的有机化合物以其特殊的性能受到 关注,对光和热以及强酸强碱或有机溶剂等都非常稳定一般选用金属钌铬合物 作为荧光指示剂即分子探针金属钌铬合物的荧光强度与氧分压存在一一对应的 关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解钌 铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与 配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命 增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的 刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子 之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度目前的研究中, 钌化合物的配体一般局限于 2,2'-联吡啶、1,10-邻菲洛啉及其衍生物 Brian[10] 在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种 不同涂料的传感器性能,结果显示在pH = 7时Ru(ph2phen)2+3显示了更高的灵敏 度。
为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平[11] 等合成Ru(II)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂 配合物 Ru(l)[4,7-双(4,-丙苯基)-1,10-邻菲洛啉]2(CIO4)2 和 Ru(II)[4,7-双(4, -庚苯基)-1,10-邻菲洛啉]3 (ClO4)2Kerry[12]等合成Ru(II)[5-丙烯酰胺基-1,10- 邻菲洛啉]3(ClO4)2实验均发现随着配体碳链的增长,荧光试剂的憎水性增大, 流失现象减少,可延长膜的使用寿命IgnacyW]等研究还发现极化后的 [Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度吸附在硅胶60上的钉(II)络合 物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧 淬灭其检测原理是根据Stern-Vlomer的猝灭方程网:F0/F=1 + Ksv[Q],其中F0为 无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧 浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化 学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时监 测。
其测量范围一般为0〜20mg/L,精度一般W1%,响应时间W60s1.4 其他检测方法电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成 能导电的铊离子通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓 度实验表明,每增加0.035S/cm的电导率相当于1mg/L的溶解氧(DO)此 方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:4Tl+O2+2H2O 4Tl++4OH- (10)然后用溶出法测定TI+离子的浓度,从而间接求得溶解氧(DO)的浓度使用该 方法取样量少,灵敏度高,而且受温度影响不大2.国内外在水体溶解氧检测领域研究的现状我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作 环节复杂,导致检测时间长,不能及时得到水质情况国内目前一些单位和研究 机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷 磁仪器厂生产的 JPSJ-605 型溶解氧分析仪,北京北斗星工业化学研究所研制的 H-BD5W 手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差 距;国内对荧光溶解氧传感器也有一些研究[5][15],技术已经达到国外平均水平, 但研究实现商品化的较少。
国外一般采用新型的基于荧光淬灭效应的溶解氧测量 仪购,代表。