文档详情

高中数学随机变量学习

cn****1
实名认证
店铺
DOC
432.01KB
约7页
文档ID:434288513
高中数学随机变量学习_第1页
1/7

1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 二、讲解: 1. 分布列:设离散型随机变量ξ可能取得值为 x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列 2. 分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 3.两点分布列:例1.在掷一枚图钉的随机试验中,令如果针尖向上的概率为,试写出随机变量 X 的分布列.解:根据分布列的性质,针尖向下的概率是() .于是,随机变量 X 的分布列是ξ01P像上面这样的分布列称为两点分布列.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布 ( two一point distribution),而称=P (X = 1)为成功概率.两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利( Bernoulli ) 试验,所以还称这种分布为伯努利分布.,,,.4. 超几何分布列:例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列;(2)至少取到1件次品的概率.解: (1)由于从 100 件产品中任取3 件的结果数为,从100 件产品中任取3件,其中恰有k 件次品的结果数为,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为。

所以随机变量 X 的分布列是X0123P(2)根据随机变量X 的分布列,可得至少取到 1 件次品的概率 P ( X≥1 ) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) ≈0.138 06 + 0. 005 88 + 0. 00006 = 0. 144 00 . 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X件次品数,则事件 {X=k}发生的概率为,其中,且.称分布列X01…P…为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布( hypergeometriC distribution ) . 例 3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率. 例4.已知一批产品共 件,其中 件是次品,从中任取 件,试求这 件产品中所含次品件数 的分布律例5.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.例6.某一射手射击所得的环数ξ的分布列如下:ξ45678910P0.020.040.060.090.280.290.22求此射手“射击一次命中环数≥7”的概率.  四、课堂练习:某一射手射击所得环数分布列为45678910P0.020.040.060.090.280.290.22求此射手“射击一次命中环数≥7”的概率 注:求离散型随机变量的概率分布的步骤:(1)确定随机变量的所有可能的值xi(2)求出各取值的概率p(=xi)=pi(3)画出表格一、选择题:1、如果是一个离散型随机变量,则假命题是( )A. 取每一个可能值的概率都是非负数;B. 取所有可能值的概率之和为1;C. 取某几个值的概率等于分别取其中每个值的概率之和;D. 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数;②在区间内随机的取一个数;③某超市一天中的顾客量 其中的是离散型随机变量的是( )A.①;  B.②;  C.③;  D.①③3、设离散型随机变量的概率分布如下,则的值为( )X1234PA.  B.  C.  D.4、设随机变量的分布列为,则的值为( )A.1;   B.;   C.;   D.5、已知随机变量的分布列为:,,则=( )A. B. C. D. 6、设随机变量等可能取1、2、3...值,如果,则值为( )A. 4 B. 6 C. 10 D. 无法确定7、投掷两枚骰子,所得点数之和记为,那么表示的随机实验结果是( )A. 一枚是3点,一枚是1点 B. 两枚都是2点 C. 两枚都是4点 D. 一枚是3点,一枚是1点或两枚都是2点8、设随机变量的分布列为,则的值为( )A.1;   B.;   C.;   D.二、填空题:9 、下列表中能成为随机变量的分布列的是   (把全部正确的答案序号填上)-1010.30.40.41230.40.7-0.150-50.30.60.1①②③④ ⑤10、已知为离散型随机变量,的取值为,则的取值为 11、一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数可能取值为 三、解答题:12、某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂次终止的概率是(=1,2,3,…).记为原物体在分裂终止后所生成的子块数目,求.一、选择题:1、D 2、D 3、C 4、B 5、A 6、C 7、D 8、C二、填空题:9、 ③④10、 11、 三、解答题:12、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟.13、解:设黄球的个数为,由题意知  绿球个数为,红球个数为,盒中的总数为.  ∴ ,,.    所以从该盒中随机取出一球所得分数的分布列为10-114、解:依题意,原物体在分裂终止后所生成的数目的分布列为24816............∴ .。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档