第三章非稳态导热分析解法本章主要要求:1、重点内容:①非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③ 一维及二维非稳态导热问题2 、掌握内容: ① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法3 、了解内容:无限大物体非稳态导热的基本特点许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间 如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏因此,应确定其内部的瞬时温度 场钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量 的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度§3—1 非稳态导热的基本概念一、非稳态导热1 、定义:物体的温度随时间而变化的导热过程称非稳态导热2、分类:根据物体内温度随时间而变化的特征不同分:1 )物体的温度随时间的推移逐渐趋于恒定值,即:e’gGFE D图手1非稳奩辱糕过程中的温度分布2)物体的温度随时间而作周期性变化如图3-1所示,设一平壁,初值温度t 0 ,令其左侧的表面温 度突然升高到耳并保持不变,而右侧仍与温度为®的空气接触,试分 析物体的温度场的变化过程。
首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、HE 、 HF 最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG(若A =const,则HG是直线) 由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参 与换热的两个不同阶段 1 )第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温 度分布受 t 分布的影响较大,此阶段称非正规状况阶段 2 )第二阶段,(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳 态导热过程进入到正规状况阶段正规状况阶段的温度变化规律是本章讨论的重点2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在3 、特点;非稳态导热过程中,在与热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态 导热的一个特点原因:由于在热量传递的路径上,物体各处温度的变化要积聚或消耗能量,所以,在热流量传递的方 向上二、非稳态导热的数学模型1、数学模型初始条件]导热微分方程'定解条件边界条件二特定的非稳态导热问题非稳态导热问题的求解=规定的{初始条件,边界条件}下,求解导热微分方程。
2 、讨论物体处于恒温介质中的第三类边界条件问题 在第三类边界条件下,确定非稳态导热物体中的温度变化特征与边界条件参数的关系已知:平板厚2 $、初温to、表面传热系数h、平板导热系数匚将其突然置于温度为打的流体 中冷却o圏3-3 毕濺数冷对率板温度场变化的影响(a) Bi fg为育限大小试分析在以下三种情况:的見〈〈1/h、少X〉〉l/h、刃兄=l/h时,平板中温度场的变化1 ) 1/h<< 匕因为於可忽略,当平板突然被冷却时,其表面温度就被冷却到S随着时间的延长,平板内各点t —入 如图3-3 ( a )2 ) 1/h>> 匕因为 忽略不计,即平板内导热的流量接近于无穷大,所以任意时刻平板中各点温度接近均匀,随着时间的延长,平板内各点t 一 ,而且整体温度下降如图3-3 ( b )3 ) 1/h=平板中的温度分布介于二者之间,如图3-3 ( c )由此可见,表面对流换热热阻1/h与导热热阻 的相对大小对物体中非稳态导热的温度场的分布有重要影响,因此,引入表征二者比值的无量纲数,毕渥数3、毕渥数1 )定义式3-1 )毕渥数属特征数(准则数)2 ) Bi 物理意义: Bi 的大小反映了物体在非稳态条件下内部温度场的分布规律。
3 )特征数(准则数):表征某一物理现象或过程特征的无量纲数4 )特征长度:是指特征数定义式中的几何尺度§3 — 2 集总参数法的简化分析一、集总参数法1、定义:当固体内的〈〈? k时,固体内的温度趋于一致,此时可认为整个固体在同一瞬间均处于 同一温度下,这时需求解的温度仅是时间的一元函数,而与坐标无关,好象该固体原来连续分布的质量与 热容量汇总到一点上,而只有一个温度值那样这种忽略物体内部导热热阻的简化分析方法称为集总参数 法2 、集总参数法的计算已知:有一任意形状的物体,其体积为V ,面积为A,初始温度为to,在初始时刻,突然将其置 于温度恒为打的流体中,且t o > ,固体与流体间的表面传热系数h,固体的物性参数均保持常数试根据集总参数法确定物体温度随时间的依变关系解: ① 建立非稳态导热数学模型方法一:椐非稳态有内热源的导热微分方程:z 无关,dh 护 dy2 dz=0•.•物体内部导热热阻很小,忽略不计•••物体温度在同一瞬间各点温度基本相等,即t仅是t的一元函数,二与坐标x则: 日£ 炉 (a )•①可视为广义热源,而且热交换的边界不是计算边界(零维无任何边界)•界面上交换的热量应折算成整个物体的体积热源,即:一①卩=般©-心 (b )• t>打,物体被冷却,.•.①应为负值3-2 )由(a ),( b )式得: 这就是瞬时时刻导热微分方程式。
方法二:根据能量守恒原理,建立物体的热平衡方程,即物体与环境的对流散热量=物体内能的减少量pcV—=-Ah(t-tf£;)=①『则有:即:②物体温度随时间的依变关系pcV— = -Ahedr&S 一 ◎=州引入过余温度:则上式表示成:其初始条件为:pcV— = -Ahe将对时间V/A是具有长度的量纲,记为';分离变量求解微分方程, 〒从0 T T积分,则:In3-3 )其中: 其中:毕渥数;傅立叶数;而 V 说明 Fov 、 Biv 中的特征长度为 V/A= ^(-BivFav)故得: (3-4 )由此可见,采用集总参数法分析时,物体内的过余温度随时间成指数曲线关系变化而且开始变化较 快,随后逐渐变慢指数函数中的hAf応卩的量纲与%的量纲相同,如果时间£=理人,则=exp(-l)= 0.368 = 36.8%贝【」: 称时间常数,记为耳的物理意义:表示物体对外界温度变化的响应程度当时间 时,物体的过余温度已是初始过余温度值的36.8%③ 确定从初始时刻到某一瞬间这段时间内,物体与流体所交换的热流量 首先求得瞬时热流量:dt将^带入瞬时热流量的定义式得:dt, (^0-^)(-—)exp(- —r)①…= (3-5)街一如)轴亡程(—詈式中负号是为了使①恒取正值而引入的。
若 (物体被加热),则用 代替 尙一⑺ 即可然后求得从时间 o到厂时刻间的总热流量:3、exp(--^-r)^T - exp(--^-T)]= d」0 pcV =曉认) 祠(3 — 6)集总参数法的判别条件对形如平板、圆柱和球这一类的物体,如果毕渥数满足以下条件:盼=h(V/A)/仪0.1M ( 3-7) 则物体中各点间过余温度的偏差小于 5% 其中 M 是与物体几何形状有关的无量纲数 无限大平板: M=1无限长圆柱: M=1/2 球 : M=1/3毕渥数的特征长度为V/A,不同几何形状,其值不同,对于:占的平板:川V 尼代 R厚度为半径为的圆柱:A7 4/37T3 R的球:A 佩Bi半径为卩=Bi由此可见,对平板: 圆柱: =Bi /2 球体:*卩=Bi/3二、11毕渥数用卩与傅立叶数卩的物理意义Bi T7定义:表征固体内部单位导热面积上的导热热阻与单位面积上的换热热阻(即外部热阻)之比Bi辜■h用卩越小,表示内热阻越小,外部热阻越大此时采用集总参数法求解更为合适物理意义: 的大小反映了物体在非稳态导热条件下,物体内温度场的分布规律2、陀1 )定义:屁卩表征两个时间间隔相比所得的无量纲时间。
TF =一 ov 12 a分子T是从边界上开始发生热扰动的时刻起到所计时刻为止的时间间隔分母可视为边界上发生的 有限大小的热扰动穿过一定厚度的固体层扩散到厂的面积上所需的时间2 )物理意义:表示非稳态导热过程进行的程度, 越大,热扰动就越深入地传播到物体内部,因而物体内各点的温度越接近周围介质的温度§3 — 3 一维非稳态导热的分析解本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应 用如何理解无限大物体,如:当一块平板的长度、宽度 >> 厚度时,平板 的长度和宽度的边缘向四周的散热对平板内的温度分布影响很少,以至于可 以把平板内各点的温度看作仅是厚度的函数时,该平板就是一块“无限大” 平板若平板的长度、宽度、厚度相差较小,但平板四周绝热良好,则热量 交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题一、无限大平板的分析解已知:厚度2&的无限大平板,初温亿初始瞬间将其放于温度为打的 流体中,而且打> 如,流体与板面间的表面传热系数为一常数试确定在非稳态过程中板内的温度分布8b■3-5 无隈大平板对称受热时坐标的选取解:如图 3-5 所示,平板两面对称受热,所以其内温度分布以其中心截面为对称面。
对于x工0的半块平板,其导热微分方程: 定解条件:t(x,O)= (0竺xdx感(§£)-匕]=-兄警耳x=0 = 0(0 0) ( 3-8)引入过余温度:&二38 _住护9 (00.2 时,采用该级数的第 一项与采用完整的级数计算平板中心温度的误差小于1%,因此,当Fo>0.2时,采用以下简化结果:— ■ — 、 ! - e 2卫『耳% — 0 花 + sin(灿刃心(01$)其中特征值 図⑺=1》…)之值与Bi有关。
XI.3-13 )由上式(3-13 )可知:Fo>0.2以后平板中任一点的过余温度 %,T )与平板中心的过余温度&(0,T )= %( T )之比为: (3-14 )此式反映了非稳态导热过程。