文档详情

圆柱绕流地数值模拟

汽***
实名认证
店铺
DOC
381.50KB
约10页
文档ID:486450352
圆柱绕流地数值模拟_第1页
1/10

word圆柱绕流的数值模拟X玉静 20070360204 过控〔2〕班 化工与能源学院摘 要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图计算结果明确:当雷诺数增加时,流动表现出一系列不同的构造当Re=5时,流动不发生别离,其后未形成旋涡,当Re=20,40,100时,流体发生别离,其后形成旋涡,且旋涡随着Re的增大而增大利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性关键词:圆柱绕流;FLUENT;雷诺数Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. Vortex increases with the increase of Re. Using putational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic.Key words:Flow around a circular cylinder;FLUENT;Reynolds number1 圆柱绕流理论分析研究的状况一个世纪以来,圆柱绕流一直是众多理论分析、实验研究与数值模拟对象。

但迄今对该流动现象物理本质的理解仍是不完整的圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡当雷诺数较大时,尾流首先失稳,出现周期性的振荡而后附着涡交替脱落,泻入尾流形成Karman涡街,随着雷诺数的增加,流动变得越来越复杂,最后开展为湍流White认为圆柱涡流具有经典性的重要意义一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡关于定常流失稳以与出现湍流的临界雷诺数主要是通过应用流场显示技术观察流动形态得到的,所以不是准确值对于分界点雷诺数就有不同的见解,Kovasznay,Roshko等认为定常流动失稳的临界雷诺数大约为40而从周期性尾流到湍流的详细的转变过程的实验研究似乎还是空白对均匀来流绕固定圆柱的二维平面流动,国内外许多学者进展过大量的研究决定圆柱绕流流态的是雷诺数(Re)的值,Re<5时,流动不发生别离, 5

Re<150,涡街是层流,150

〔2〕动量方程 〔4〕式中,xi〔i=1,2,3〕为坐标系坐标,xj(j=1,2,3)为坐标系坐标,ui(i=1,2,3)为沿i方向的速度分量,fi为沿i方向的质量力,P是静压,ρ为空气密度3 模型建立与网格划分一个无穷长直径为2.0m的圆柱体,放置在无穷远来流速度为1.0m/s不受干扰的均匀横流中,计算区域如图1所示网格划分采用四边形网格,网格数为16000Gambit中网格划分结果如图2所示图1 计算区域图2 网格划分4边界条件与求解设置进口为Velocity-inlet,出口为Outflow,其他边界默认为Wall,计算区域设为fluid,在gambit中设置界面如图3所示图3边界条件置界面 图4指定流体区域求解设置如下:〔1〕控制方程采用连续方程和动量方程,而不考虑能量方程〔2〕求解器选择COUPLED IMPLICIT SOLVER,选择Steady状态〔3〕为了提高计算精度,差分格式采用二阶迎风格式〔4〕速度场和压力场的求解基于Simple算法,松弛因子默认〔5〕模型选择层流流动〔6〕残差设为e-6在fluent中的操作具体如下:〔1〕读入从gambit中导出的msh文件,检查网格质量,并确定模型单位,如图5所示。

〔2〕设置求解器,如图6所示〔3〕选择层流模型,如图7所示图5 确定单位图6 选择求解器图7 选择层流模型〔4〕改变流体介质,如图8所示〔5〕设置入口速度,如图9所示〔6〕设置残差,如图10所示〔7〕初如化流场,进展迭代求解图8 改变流体介质图9 设置入口速度图10 设置残差5数值计算与结果讨论雷诺数由圆柱体直径和自由来流速度确定通过改变粘度,得到不同的雷诺值(5,20,40,100),Re =ρUD/μ边界条件:进口和侧面边界始终为自由来流条件U=1.0m/s,流动出口为零法向梯度出口边界流体特性假定为常数,结果见表1表1 流体特性Re52040100密度ρ/(kg/m3)1111动力粘度μ/(Pa.s)0.4Re=20时的残差曲线如图11所示图11 Re=20时计算的残差曲线(a) Re=5时的速度分布〔b〕Re=20时的速度分布(c) Re=40时的速度分布(d) Re=100时的速度分布图12不同Re下的速度分布〔a〕Re=5时的流线分布 (b)Re=20时的速度分布(c) Re=40时的流线分布 (d)Re=100时的流线分布图13不同Re下的流线分布 图12为不同Re下的速度分布,图13为不同Re下的流线分布,由图12、图13可以看出流体流过圆柱体时,受圆柱体影响,圆柱后面会形成一低速区。

当Re=5时,流动不发生别离,其后未形成旋涡,当Re=20,40,100时,流体发生别离,其后形成旋涡,且旋涡随着Re的增大而增大6 结论本文使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的速度分布云图和流线图计算结果明确:〔1〕当雷诺数增加时,流动表现出一系列不同的构造当Re=5时,流动不发生别离,其后未形成旋涡,当Re=20,40,100时,流体发生别离,其后形成旋涡,且旋涡随着Re的增大而增大〔2〕利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性参考文献:[1]酆庆增.圆柱绕流的非线性动力学[J].力学进展,1994, 24(4):525~544.[2]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟[J].力学学报,1999,31(1):100~105.[3]叶春明,吴文权.数值模拟圆柱绕流旋涡生成、别离与演化[J].华东工业大学学报,1995,17(4):25~30.[4]叶春明,吴文权.数值模拟圆柱绕流旋涡运动与尾流不稳定性分析[J].工程热物理学报,1997,18(2):169~172.[5]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964~969.[6]万德成.用水深平均雷诺方程模拟有限长直立圆柱绕流 [J].某某大学学报,1995,1(3):259~268. / 。

下载提示
相似文档
正为您匹配相似的精品文档